q正弦函数是正弦函数的q模拟
s i n q ( x ) = ∑ n = 0 ∞ ( 1 − q ) 2 n + 1 ( − 1 ) n ∗ x 2 n + 1 ( q ; q ) 2 n + 1 {\displaystyle sin_{q}(x)=\sum _{n=0}^{\infty }{\frac {(1-q)^{2n+1}(-1)^{n}*x^{2n+1}}{(q;q)_{2n+1}}}}
其中的符号 : ( q ; q ) 2 n + 1 {\displaystyle :(q;q)_{2n+1}} 是Q阶乘幂
Frank Oliver,NIST Handbook of Mathematical Functions, p422, Cambridge University Press, 2010