跳转到内容

洗牌

本页使用了标题或全文手工转换
维基百科,自由的百科全书
对切法洗牌
对切法洗牌过程

洗牌(英语:Shuffling)是一种牌类游戏的专用术语,是指将游戏牌的排列顺序打乱,使纸牌充分的混合[1],使每一张牌被抽到的几率都相等的过程,以便开始游戏或进行下一个牌局。洗牌一般会伴随着切牌以帮助确保洗牌的过程中没有人为操作的结果。

洗牌方法

洗牌方法分为人工洗牌和机械洗牌,一般情况是人工洗牌,而机械洗牌为使用洗牌机等工具进行洗牌,一般在赌场最常见。另外有些纸牌,如UNO会附洗牌或发牌之机器。人工洗牌公平性较机械洗牌差,因为人工洗牌可能包含作弊的疑虑,或次数不足导致牌无法充分混合,又或者人工洗牌甚至能被洗牌者控制牌的位置,如魔术洗牌手法,可依洗牌者的意愿排列纸牌顺序。

人工洗牌

人工洗牌是较常见的一种洗牌方法,不需要器具或工具,只须靠双手即可完成。最常见的洗牌法是交叠法与对切法。

交叠法

侧切洗牌法,可以视为交叠法的一种

交叠法是最常见且很简单的洗牌方法。其流程为右手先握紧牌,左手将下半部的牌抽出,然后叠在上面那层牌之上,右手抓住左手拿的牌的上半部,左手再将下半部抽出,交叠与右手拿的牌的上方,重复以上动作直至牌叠完,亦可以改为左手拿牌。此种洗牌法简单方便,但是对于一副新的牌或是照顺序排列的牌则可能无法彻底洗干净,可能还会存在少量连续的牌。

侧切法

侧切法与交叠法作法相同,差别在于交叠法是纵向洗牌,侧切法是横向洗牌。

对切法

在对切洗牌之后,将牌弯回去的动作

对切法,又称为交错式洗牌riffle)或燕尾洗牌法鸽尾洗牌法dovetail shuffle),是一种常见的洗牌方法。主要流程为先将牌分成两半,以拇指扣紧牌,使牌弯曲,拇指逐渐松开向内拨牌,使两叠牌交错叠在一起,形成所谓的桥,再将它反向弯曲,使牌回到原位则完成一次洗牌。然而这种方法是比较困难的,因此通常在娱乐场中使用,因为它最小化了洗牌期间暴露牌卡的风险。这种洗牌方式虽然确实能洗得非常干净,但也有因为过度弯曲而损坏牌公平性的疑虑,因此在赌场中会经常替换牌,以防有人利用洗牌时造成牌弯曲程度不同而得到了优势。

吉尔伯特 - 杉农 - 里德模型 提供了对切洗牌法随机结果的数学模型,已被实验证明是一个很适合人类的洗牌法[2],根据该模型形成的基础,建议使用该洗牌法洗七次,能够得到分布最均匀的牌,彻底使它们均匀混合[3]

印度洗牌法

印度洗牌法Hindu shuffle),也称为“Kenchi”或“Kutti Shuffle”(印度文剪刀),是交叠法的一种。印度洗牌法是一种很古老的洗牌方法,起源于印度,洗牌时将牌面朝下,用中指和拇指扣住牌,另一只手将半叠牌抓住拉出,并使它掉到手掌上,重复该动作,直至所有的牌都已在另一只手上。印度洗牌与一般的交叠法或侧切法不同在于印度洗牌法是去上半叠,所有的操作都是在手上取牌。这种洗牌法是在亚洲和世界其他地区的最常见的洗牌手法,而交叠洗牌主要用于西方国家

花式洗牌

扑克自动洗牌机

扑克自动洗牌机英语Shuffling_machine的历史相当久,1878年Henry Ash即提出过自动洗牌机的设计,可一次放入多副扑克牌,提高洗牌的速度与降低作弊的可能性,洗牌机还可设定每付牌连续洗的次数,且每次都重新洗牌可有效杜绝黑杰克算牌的问题。电动洗牌机刚发明时单价较高,主要使用于各大职业赌场,现已普及到各种娱乐场所及个人使用。

参见

参考文献

  1. ^ 李万杰 扑克牌魔术 扑克牌基本知识:洗牌 p13 益群书店出版 ISBN 957-552-020-3
  2. ^ Diaconis, Persi, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 11, Hayward, CA: Institute of Mathematical Statistics, 1988, ISBN 0-940600-14-5, MR 0964069 .
  3. ^ Kolata, Gina, In Shuffling Cards, 7 Is Winning Number, New York Times, January 9, 1990 [2014-03-08], (原始内容存档于2014-03-18) .
  1. Aldous, David; Diaconis, Persi (1986). "Shuffling Cards and Stopping Times". American Mathematical Monthly 93 (5): 333–348. doi:10.2307/2323590. JSTOR 2323590.
  2. Dave Bayer, Persi Diaconis. Trailing the Dovetail Shuffle to its Lair. The Annals of Applied Probability. May 1992, 2 (2): 294–313 [2018-04-02]. ISSN 1050-5164. doi:10.1214/aoap/1177005705. (原始内容存档于2021-03-08) (英语). 
  3. Diaconis, Persi, Group Representations in Probability and Statistics (Lecture Notes Vol 11), Institute of Mathematical Statistics: 77–84, 1988, ISBN 978-0-940600-14-0 
  4. Diaconis, Persi, Mathematical Developments from the Analysis of Riffle Shuffling, Technical Report 2002-16 (PDF), Technical Reports 2002 (Stanford University Department of Statistics), 2002, (原始内容 (PDF)存档于2010-08-04) 
  5. Persi Diaconis, R.L Graham, William M Kantor. The mathematics of perfect shuffles. Advances in Applied Mathematics: 175–196. [2018-04-02]. doi:10.1016/0196-8858(83)90009-x. (原始内容存档于2021-02-27). 
  6. Mann, Brad, How many times should you shuffle a deck of cards?, UMAP Journal (Undergraduate Mathematics and Its Applications) (COMAP (Consortium for Mathematics and Its Applications)), Winter 1994, 15 (4): 303–332 [2014-03-08], (原始内容存档于2021-01-07)mirrored at Dartmouth College Chance Project: Teaching Aids: Articles, "How many times do you have to shuffle a deck of cards?"  |year=|date=不匹配 (帮助);
  7. L. N. Trefethen, L. M. Trefethen. How many shuffles to randomize a deck of cards?. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000-10-08, 456 (2002): 2561–2568 [2018-04-02]. ISSN 1364-5021. doi:10.1098/rspa.2000.0625. (原始内容存档于2018-12-01) (英语). 
  8. Anke van Zuylen, Frans Schalekamp. THE ACHILLES' HEEL OF THE GSR SHUFFLE: A NOTE ON NEW AGE SOLITAIRE. Probability in the Engineering and Informational Sciences. 2004/07, 18 (3): 315–328 [2018-04-02]. ISSN 1469-8951. doi:10.1017/s0269964804183034. (原始内容存档于2020-09-08) (英语). 

外部链接

Physical card shuffling:

Mathematics of shuffling:

Real world (historical) application: