跳至內容

Maple

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
Maple
開發者楓軟英語Waterloo Maple
首次發布1982年,​42年前​(1982
目前版本2020.1(2020年6月10日,​4年前​(2020-06-10[±][1]
程式語言C語言, Java, Maple language
作業系統跨平台
類型電腦代數系統
許可協定私有
網站www.maplesoft.com/products/maple/

MAPLE是一個符號計算數值計算軟體平臺

總覽

核心功能

使用者能夠直接使用傳統數學符號進行輸入,也可以客製化個性化的介面。對於數值計算有額外的支援,能夠擴充到任意精度,同時亦支援符號演算及視覺化。符號演算的例子參見下文。Maple內建有一種動態的命令列風格的程式語言,該語言支援具有作用域的變數。同時亦有其他語言的介面(C、FORTRAN、Java、Matlab和Visual Basic)。還具有與Excel進行互動的介面。

架構

Maple由一個很小的由C語言編寫的核心提供Maple語言。許多功能由各種來源的函式庫提供。許多數值計算由NAG數值計算庫, ATLAS庫, GNU多精度庫提供。大部分庫由Maple語言編寫,並且可檢視原始碼。

Maple中不同的功能需要不同格式的數值資料。符號表達式在主記憶體中以有向無環圖的形式儲存。標準介面和計算介面由Java語言編寫。經典介面由C語言編寫。


版本

版本 年份
Maple 1.0 1982年1月
Maple 1.1 1982年
Maple 2.0 1982年5月
Maple 2.1 1982年6月
Maple 2.15 1982年8月
Maple 2.2 1982年12月
Maple 3.0 1983年5月
Maple 3.1 1983年10月
Maple 3.2 1984年4月
Maple 3.3 1985年3月(第一個公開版本)
Maple 4.0 1986年4月
Maple 4.1 1987年5月
Maple 4.2 1987年12月
Maple 4.3 1989年3月
Maple V 1990年8月
Maple V R2 1992年11月
Maple V R3 1994年3月15日
Maple V R4 1996年1月
Maple V R5 1997年11月1日
Maple 6 2000年1月31日
Maple 6.01 ?年?月
Maple 6.02 ?年?月
Maple 7.00 2001年5月28日
Maple 7.01 ?年?月
Maple 8.00 2002年4月22日
Maple 9.00 2003年6月30日
Maple 9.01 2003年7月10日
Maple 9.02 2003年?月
Maple 9.03 2003年11月5日
Maple 9.50 2004年4月7日
Maple 9.51 2004年8月17日
Maple 9.52 2005年1月21日
Maple 10 2005年5月13日
Maple 10.01 2005年?月
Maple 10.02 2005年11月8日
Maple 10.03 ?年?月
Maple 10.04 2006年5月30日
Maple 10.05 2006年6月9日
Maple 10.06 2006年10月2日
Maple 11.0 2007年2月17日
Maple 11.01 2007年7月10日
Maple 11.02 2007年11月10日
Maple 12.0 2008年4月10日
Maple 12.01 2008年10月
Maple 12.02 2008年12月
Maple 13.0 2009年4月13日
Maple 13.01 2009年7月8日
Maple 13.02 2009年7月8日
Maple 14.00 2010年4月5日
Maple 14.01 2010年10月28日
Maple 15 2011年4月13日
Maple 15.01 2011年6月2日
Maple 16 2012年3月28日
Maple 16.01 2012年5月16日/8月27日
Maple 16.02 2012年11月18日
Maple 17.00 2013年2月21日/3月13日/4月10日
Maple 18.00 2014年3月6日
Maple 18.01 2014年5月
Maple 18.01a 2014年7月
Maple 18.02 2014年11月
Maple 2015 2015年3月
Maple 2015.1 2015年11月
Maple 2016 2016年3月2日
Maple 2016.1 2016年4月20日
Maple 2016.1.a 2016年4月27日
Maple 2017 2017年5月25日
Maple 2017.1 2017年6月28日
Maple 2017.2 2017年8月2日
Maple 2017.3 2017年10月3日
Maple 2018.0 2018年3月21日
Maple 2019.0 2019年3月14日

Maple代碼範例

簡單指令式程式的構造:

myfac := proc(n::nonnegint)
   local out, i;
   out := 1;
   for i from 2 to n do
       out := out * i
   end do;
   out
end proc;

一些簡單的函式也可以使用直觀的箭頭表示法表示

myfac := n -> product( i, i=1..n );

開方

evalf[100](2^1/12)

1.059463094359295264561825294946341700779204317494185628559208431458761646063255722383768376863945569

求根

f:=x^2-63*x+99=0;

solve(f,x);

,

f := x^7+3*x = 7;

solve(f,x);

RootOf(, index = 1),
RootOf(, index = 2),
RootOf(, index = 3),
RootOf(, index = 4),
RootOf(, index = 5),
RootOf(, index = 5),
RootOf(, index =7),

evalf(%);

  • (1.1922047171828134),
  • (0.8658388666792263) + (0.9230818802764879) I,
  • (0.2099602786426775) + (1.3442579297631496) I,
  • (1.2519809466279554) + (0.6424819505558892) I,
  • (1.2519809466279554) - (0.6424819505558892) I,
  • (0.2099602786426775) - (1.3442579297631496) I,
  • (0.8658388666792263) - (0.9230818802764879) I


f := sin(x)^3+5*cosh(x) = 0;


> solve(f, x);


RootOf(

> evalf(%);

0.2873691672 - 1.111497506 I

求解方程式和不等式

根據,尋找的所有實數解。

solve({x-y > 6, (x+y)^5 = 9}, [x, y])[];

答案:

方程組

代數方程組
> p1 := x*y*z-x*y^2-z-x-y; p2 := x*z-x^2-z-y+x; p3 := z^2-x^2-y^2;
> sys := {p1, p2, p3};
> var := {x, y, z};
> solve(sys, var);
{x = 0, y = y, z = -y}, {x = 3, y = 4, z = 5}, {x = 1, y = 0, z = -1}
三角方程組
> f1 := cos(x)+sin(3*y)+tan(5*z) = 0;
> f2 := cos(3*z)+tan(3*y^2)-sin(2*z^3) = 33;
> f3 := tan(4*x+y)-sin(5*y-4*z) = 2*x;
> sys1 := {f1, f2, f3};
> var1 := {x, y, z};
{x, y, z}
> fsolve(sys1, var1);
{x = -10.77771790, y = -2.397849343, z = -7.382158103}

超幾何函式

矩陣與行列式

計算矩陣行列式

M:= Matrix([[1,2,3]], [a,b,c], [[x,y,z]]);  # 矩阵样例
with(LinearAlgebra)
m:=Determinant(M);

答案:

朗斯基行列式

with(VectorCalculus);

w:=Wronskian([1,x,x^3+x-1],x)

Matrix(3, 3, {(1, 1) = 1, (1, 2) = x, (1, 3) = x^3+x-1, (2, 1) = 0, (2, 2) = 1, (2, 3) = 3*x^2+1, (3, 1) = 0, (3, 2) = 0, (3, 3) = 6*x})

d:=Determinant(w);

6x
雅可比矩陣

J := Jacobian([r*sin(t)), r^2*cosh(t)], [r, t]);

m:=Matrix(2, 2, {(1, 1) = cos(t), (1, 2) = -r*sin(t), (2, 1) = sinh(t), (2, 2) = r*cosh(t)})

d:=Determinant(m);

sin(t)*r^2*sinh(t)-2r^2cos(t)cosh(t)

海森矩陣

f := x^3+y*cos(x)+t*tan(y))

with(VectorCalculus);

h:=hessian(f,[x,y,t]);

積分

.

int(cos(x/a), x);

答案:

.

int(sin(x/a), x);

答案:

注意:Maple在積分時不提供常數項C,必須自行補上。

定積分

> int(cos(x/a), x = 1 .. 5);


16 a sin(1/a)* cos^4(1/a) - 12 a sin^2(1/a)

求解線性微分方程式

計算以下線性常微分方程式的一個精確解初始條件為

dsolve( {diff(y(x),x,x) - 3*y(x) = x, y(0)=0, D(y)(0)=2}, y(x) );

答案:

非線性常微分方程式

dsolve(diff(y(x), x, x) = x^2*y(x))

解:

BesselI(,)

+BesselK(,)

級數展開

series(tanh(x),x=0,15)
f:=int(exp^cosh(x),x)
series(f,x=0,15);

拉普拉斯轉換

with(inttrans);

拉普拉斯轉換

> f := (1+A*t+B*t^2)*exp(c*t);

> laplace(f, t, s);

反拉普拉斯轉換

invlaplace(1/(s-a),s,x)

z := y(t);

y(t)
f := diff(z, t, t)+a*(diff(z, t)) = b*z;

with(inttrans);


g := laplace(f, t, s);
s^2*laplace(y(t), t, s) - D(y)(0) - s y(0)
+ a s^2 laplace(y(t), t, s) - a y(0) = b laplace(y(t), t, s)
invlaplace(g, s, t);

傅立葉轉換

with(inttrans);

fourier(sin(x),x,w)

*(Dirac(w-1)+Dirac(w+1))

繪製單變數函式圖形

繪製函式

plot(x*sin(x),x=-10..10);

繪製雙變數函式

繪製函式的範圍為 -1到1

plot3d(x^2+y^2,x=-1..1,y=-1..1);

繪製函式動畫

二維動畫

with(plots);

animate(subs(k = .5, f), x = -30 .. 30, t = -10 .. 10, numpoints = 200, frames = 50, color = red, thickness = 3);

鐘形孤立子
三維函式動畫
三維動畫

with(plots)

animate3d(cos(t*x)*sin(3*t*y), x = -Pi .. Pi, y = -Pi .. Pi, t = 1 .. 2)

求解偏微分方程組

求解偏微分方程式

條件為.

eqn1:= diff(v(x, t), x) = -u(x,t)*v(x,t):
eqn2:= diff(v(x, t), t) = -v(x,t)*(diff(u(x,t), x))+v(x,t)*u(x,t)^2:
eqn3:= diff(u(x,t), t)+2*u(x,t)*(diff(u(x,t), x))-(diff(diff(u(x,t), x), x)) = 0:
pdsolve({eqn1,eqn2,eqn3,v(x,t)<>0},[u,v]): op(%);

答案: 

積分方程式

尋找函式滿足積分方程式 .

eqn:= f(x)-3*Integrate((x*y+x^2*y^2)*f(y), y=-1..1) = h(x):
intsolve(eqn,f(x));

答案:

注釋

  • 現在,MATLAB已改用MuPAD替代了matlab的Maple符號計算核心。

參考文獻

  • 何青 王麗芬編著《Maple教程》 科學出版社 2010 ISBN 9787030177445
  • David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
  • George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759
  1. ^ Maple Product History. [2020-03-20]. 

外部連結

參見

Template:碎形軟體