旋转平面

维基百科,自由的百科全书

旋转面旋转平面(英语:plane of rotation),是一个用于描述空间旋转的抽像概念。

十维以下的旋转平面数量如下表所示:

维数
旋转平面 0 0 1 1 2 2 3 3 4 4 5


旋转平面主要用作描述四维空间及以上的旋转,将高维旋转分解为简单的几何代数描述。 [1]

数学上,旋转平面可用多种方式描述。可用平面旋转角度来描述,可用克利福德代数二重向量来描述。旋转平面又与旋转矩阵特征值和特征向量有关。


二维

二维空间只有一个旋转平面,即空间本身的平面。在笛卡尔坐标系笛卡尔平面,在复数复平面。因此,任何旋转都是整个平面空间的旋转,仅原点保持固定。完全由带符号的旋转角度指定,例如在 -π 到 π 的范围内。因此若角度为θ,复平面的旋转则由以下欧拉公式给出:

笛卡尔平面的旋转则由以下旋转矩阵给出[6]

三维

旋转轴沿z轴位于xy平面的三维旋转平面
地球其自转轴和自转平面。

三维空间可以有无数个旋转平面,但当旋转平面有了一个,就不能第二个旋转平面。

三维任何旋转都总是只有一个固定的轴,即旋转轴

这可以用如下矩阵来描述(旋转角度为θ):

另一例子是地球自转自转轴北极南极的连线,自转平面穿过北半球和南半球之间的赤道平面。

其它例子包括陀螺仪飞轮机械装置,通常沿旋转平面储存大量旋转动能

四维

一般四维旋转英语Rotations in 4-dimensional Euclidean space只有一个固定点,即原点。因此,四个维度没有旋转轴。但是四维空间可以使用旋转平面,并且在四个维度中的每个非平凡旋转都可以有一至两个旋转平面。

简单旋转

仅具有一个旋转平面的旋转是简单旋转英语SO(4)#Simple rotations

简单旋转有一个固定的平面,因此点在旋转时不会改变其与该平面的距离。旋转平面与该平面正交,可以说旋转发生在该平面内。


例如,下列矩阵固定 xy 平面:此平面中的点且仅在该平面中的点保持不变。旋转平面是 zw 平面,该平面上的点旋转角度 θ。一般点仅在 zw 平面内旋转,即仅更改其 z 和 w 座标来绕 xy 平面旋转。

在二维和三维,所有旋转都是简单旋转,因为只有一个旋转平面。只有在四维以上才存在不是简单旋转的旋转。在四维也存在双重旋转和等斜旋转。

双重旋转

双旋转英语SO(4)#Double rotations有两个旋转平面,没有固定平面,唯一的固定点是原点。旋转发生在两旋转平面中。这些平面是正交的,也就是说,它们没有共同的向量,因此一个平面中的每个向量都与另一个平面中的每个向量成直角。两个旋转平面跨越四维空间,因此空间中的每个点都可以由两个点指定,每个平面上一个。

双旋转有两个旋转角度,每个旋转平面一个。双重旋转有两个平面和两个非零角度α、β(如果任一角度为零,则是简单旋转)。第一个平面的旋转α点,第二个平面的旋转β点。所有其他点都旋转α和β之间的角度,因此在某种意义上是αβ共同决定了旋转量。对于一般的双旋转,旋转平面和角度是唯一的,并且给定一般的旋转,它们可以被计算。例如,xy 平面中的 α 和 zw 平面中的 β 的旋转由矩阵给出

等斜旋转

超正方体等斜旋转的投影。

双旋转的一个特殊情况是角度相等,即 α = β ≠ 0。

例如,在等斜旋转英语SO(4)#Isoclinic rotations中所有非零点都会旋转相同的角度 α。最重要的是,旋转平面不是唯一标识的。相反,有无数对正交平面可以被视为旋转平面。例如可以任意一点,它旋转所在的平面以及与其正交的平面可以当作两个旋转平面。[8]

高维

旋转平面数量公式:

另见

  1. ^ 1.0 1.1 1.2 1.3 1.4 Lounesto (2001) pp. 222–223
  2. ^ Lounesto (2001) p. 38
  3. ^ Hestenes (1999) p. 48
  4. ^ Lounesto (2001) p. 222
  5. ^ Lounesto (2001) p.87
  6. ^ Lounesto (2001) pp.27–28
  7. ^ Hestenes (1999) pp 280–284
  8. ^ Lounesto (2001) pp. 83–89
  9. ^ Lounesto (2001) p. 57–58
  10. ^ Hestenes (1999) p. 278–280
  11. ^ Dorst, Doran, Lasenby (2002) pp. 79–89
  12. ^ Dorst, Doran, Lasenby (2002) pp. 145–154

参考