格利泽1151
观测资料 历元 J2000.0 | |
---|---|
星座 | 大熊座 |
星官 | |
赤经 | 11h 50m 57.72145s[1] |
赤纬 | +48° 22′ 38.5625″[1] |
视星等(V) | 14.008[2] |
特性 | |
光谱分类 | dM4.5[2] |
B−V 色指数 | 1.787[3] |
天体测定 | |
径向速度 (Rv) | ±0.28 −36.01[4] km/s |
自行 (μ) | 赤经:-1545.069[1] mas/yr 赤纬:-962.724[1] mas/yr |
视差 (π) | 124.3378 ± 0.0549[1] mas |
距离 | 26.23 ± 0.01 ly (8.043 ± 0.004 pc) |
绝对星等 (MV) | ±0.022 14.482[2] |
详细资料 | |
质量 | 0.1540[3] M☉ |
半径 | 0.1903[3] R☉ |
温度 | ±26 3,143[2] K |
金属量 [Fe/H] | +0.04[2] dex |
自转速度 (v sin i) | 2.0[4] km/s |
年龄 | 2.5[3] Gyr |
其他命名 | |
参考数据库 | |
SIMBAD | 资料 |
GJ 1151是一颗位于北天拱极星座大熊座北部的一颗拱极星,距离太阳26.2光年。它具有微红的色调,视星等为14.0等,因为太黯淡而使得肉眼看不见[2]。这颗恒星正在以−36km/s的径向速度接近[4],并且具有相对较大的自行,以″·yr−1的速率穿越 1.815天球[6]。
这是一颗小的红矮星,其光谱类型为dM4.5[2]。 它有25亿年的历史[3],并且以2.0的投影旋转速度自转[4]。这颗恒星的质量约为太阳的15.4%[3],半径为太阳半径的19.0%[3],有效温度为3,143K[2]。
行星系?
2020年,天文学家宣布发现来自恒星的无线电辐射具有大约地球大小的行星,在1-5天的轨道上公转,并与恒星的磁场相互作用[7][8][9][10][11][12]。这样的交互作用类似于将木星-木卫一磁场相互作用放大的版本,GJ 1151扮演木星,而其行星扮演木卫一的角色。该发现于2021年2月使用径向速度法得到证实[13],但随着更多数据的出现,一个月后就遭到驳斥[14]。
成员 (依恒星距离) |
质量 | 半长轴 (AU) |
轨道周期 (天) |
离心率 | 倾角 | 半径 |
---|---|---|---|---|---|---|
b (未确认) | ≤1.2[14] M⊕ | 0.01735+0.00065 −0.00070 |
2.0183+0.0084 −0.0008 |
? |
相关条目
参考资料
- ^ 1.0 1.1 1.2 1.3 1.4 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533 . doi:10.1051/0004-6361/202039657 . 已忽略未知参数
|collaboration=
(帮助) (勘误: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR. - ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Houdebine, Éric R.; et al. The Mass-Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs. The Astronomical Journal. August 2019, 158 (2): 17. Bibcode:2019AJ....158...56H. S2CID 159041104. arXiv:1905.07921 . doi:10.3847/1538-3881/ab23fe. 56.
- ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Mann, Andrew W.; et al. How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius. The Astrophysical Journal. May 2015, 804 (1): 38. Bibcode:2015ApJ...804...64M. S2CID 19269312. arXiv:1501.01635 . doi:10.1088/0004-637X/804/1/64. 64.
- ^ 4.0 4.1 4.2 4.3 Jeffers, S. V.; et al. CARMENES input catalogue of M dwarfs. III. Rotation and activity from high-resolution spectroscopic observations. Astronomy & Astrophysics. June 2018, 614: 19. Bibcode:2018A&A...614A..76J. S2CID 56147445. arXiv:1802.02102 . doi:10.1051/0004-6361/201629599. A76.
- ^ G 122-49. SIMBAD. 斯特拉斯堡天文资料中心.
- ^ Lépine, Sébastien; Shara, Michael M. A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog). The Astronomical Journal. March 2005, 129 (3): 1483–1522. Bibcode:2005AJ....129.1483L. S2CID 2603568. arXiv:astro-ph/0412070 . doi:10.1086/427854.
- ^ Vedantham, H. K.; et al. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nature Astronomy. 2020-02-17, 4 (6): 577–583 [2022-09-01]. Bibcode:2020NatAs.tmp...34V. ISSN 2397-3366. S2CID 211204712. arXiv:2002.08727 . doi:10.1038/s41550-020-1011-9. hdl:1887/3133600. (原始内容存档于2023-01-20) (英语).
- ^ 8.0 8.1 Pope, Benjamin J. S.; et al. No Massive Companion to the Coherent Radio-emitting M Dwarf GJ 1151. The Astrophysical Journal Letters. 17 February 2020, 890 (2): L19 [1 March 2020]. Bibcode:2020ApJ...890L..19P. S2CID 211171765. arXiv:2002.07850 . doi:10.3847/2041-8213/ab5b99. (原始内容存档于2023-02-14).
- ^ Starr, Michelle. For The First Time, Astronomers Have Detected an Exoplanet Using Radio Waves. ScienceAlert.com. 29 February 2020 [1 March 2020]. (原始内容存档于2022-09-26).
- ^ Radio telescope measures aurorae in distant planetary system. UPI. [2020-02-26]. (原始内容存档于2022-04-22) (英语).
- ^ Redd, Nola Taylor. New Exoplanet Search Strategy Claims First Discovery. Quanta Magazine. 18 February 2020 [2020-02-26]. (原始内容存档于2023-03-27) (英语).
- ^ Clark, Stuart. An exoplanet is generating radio waves from its red dwarf sun. New Scientist. [2020-02-26]. (原始内容存档于2022-12-05) (美国英语).
- ^ 13.0 13.1 Mahadevan, Suvrath; Stefánsson, Gudmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D.; Kanodia, Shubham; Ramsey, Lawrence W.; Wolszczan, Alexander; Endl, Michael; Bender, Chad F.; Diddams, Scott A.; Fredrick, Connor; Hearty, Fred; Monson, Andrew; Metcalf, Andrew J.; Roy, Arpita; Schwab, Christian, The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star, The Astrophysical Journal Letters, 2021, 919 (1): L9, Bibcode:2021ApJ...919L...9M, S2CID 231802021, arXiv:2102.02233 , doi:10.3847/2041-8213/abe2b2
- ^ 14.0 14.1 Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Béjar, V. J. S.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Pallé, E.; Rodríguez-López, C.; Schweitzer, A.; Zapatero Osorio, M. R.; Zechmeister, M., The CARMENES search for exoplanets around M dwarfs, Astronomy & Astrophysics, 2021, 649: L12, S2CID 126038821, arXiv:2103.10216 , doi:10.1051/0004-6361/202140786