局域化的時變電荷 和電流密度 在真空中是電磁波 的源。在有源的情形下,馬克士威方程組 可以寫成一個非齊次的電磁波方程式 (英文:Inhomogeneous electromagnetic wave equation )的形式,正是因為波源的存在使得偏微分方程式 變為非齊次。
國際單位
真空中的馬克士威方程組在含有電荷
ρ
{\displaystyle \rho }
和電流
J
{\displaystyle \mathbf {J} }
的情形下可以用向量勢 和純量勢 表示為
∇
2
φ
+
∂
∂
t
(
∇
⋅
A
)
=
−
ρ
ε
0
{\displaystyle \nabla ^{2}\varphi +{{\partial } \over \partial t}\left(\nabla \cdot \mathbf {A} \right)=-{\rho \over \varepsilon _{0}}}
∇
2
A
−
1
c
2
∂
2
A
∂
t
2
−
∇
(
1
c
2
∂
φ
∂
t
+
∇
⋅
A
)
=
−
μ
0
J
{\displaystyle \nabla ^{2}\mathbf {A} -{1 \over c^{2}}{\partial ^{2}\mathbf {A} \over \partial t^{2}}-\nabla \left({1 \over c^{2}}{{\partial \varphi } \over {\partial t}}+\nabla \cdot \mathbf {A} \right)=-\mu _{0}\mathbf {J} }
此時電場和磁場分別為
E
=
−
∇
φ
−
∂
A
∂
t
{\displaystyle \mathbf {E} =-\nabla \varphi -{\partial \mathbf {A} \over \partial t}}
以及
B
=
∇
×
A
{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }
.
如果加上勞侖次規範條件
1
c
2
∂
φ
∂
t
+
∇
⋅
A
=
0
{\displaystyle {1 \over c^{2}}{{\partial \varphi } \over {\partial t}}+\nabla \cdot \mathbf {A} =0}
則非齊次的波動方程式 為
∇
2
φ
−
1
c
2
∂
2
φ
∂
t
2
=
−
ρ
ε
0
{\displaystyle \nabla ^{2}\varphi -{1 \over c^{2}}{\partial ^{2}\varphi \over \partial t^{2}}=-{\rho \over \varepsilon _{0}}}
∇
2
A
−
1
c
2
∂
2
A
∂
t
2
=
−
μ
0
J
{\displaystyle \nabla ^{2}\mathbf {A} -{1 \over c^{2}}{\partial ^{2}\mathbf {A} \over \partial t^{2}}=-\mu _{0}\mathbf {J} }
.
厘米-克-秒單位和勞侖茲-黑維塞單位
在厘米-克-秒制 下,方程式的形式為
∇
2
φ
−
1
c
2
∂
2
φ
∂
t
2
=
−
4
π
ρ
{\displaystyle \nabla ^{2}\varphi -{1 \over c^{2}}{\partial ^{2}\varphi \over \partial t^{2}}=-{4\pi \rho }}
∇
2
A
−
1
c
2
∂
2
A
∂
t
2
=
−
4
π
c
J
{\displaystyle \nabla ^{2}\mathbf {A} -{1 \over c^{2}}{\partial ^{2}\mathbf {A} \over \partial t^{2}}=-{4\pi \over c}\mathbf {J} }
電場和磁場的形式為
E
=
−
∇
φ
−
1
c
∂
A
∂
t
{\displaystyle \mathbf {E} =-\nabla \varphi -{1 \over c}{\partial \mathbf {A} \over \partial t}}
B
=
∇
×
A
{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }
勞侖次規範條件為
1
c
∂
φ
∂
t
+
∇
⋅
A
=
0
{\displaystyle {1 \over c}{{\partial \varphi } \over {\partial t}}+\nabla \cdot \mathbf {A} =0}
.
如果採取有時在高維相對論場合計算中使用的勞侖茲-黑維塞單位制 ,電荷和電流密度需要從厘米-克-秒制變換為
ρ
→
ρ
4
π
{\displaystyle \rho \rightarrow {\rho \over {4\pi }}}
J
→
1
4
π
J
{\displaystyle \mathbf {J} \rightarrow {1 \over {4\pi }}\mathbf {J} }
.
非齊次波方程式的協變形式
在狹義相對論 中,馬克士威方程組可以寫成協變 的形式:
◻
A
μ
=
d
e
f
∂
β
∂
β
A
μ
=
d
e
f
A
μ
,
β
β
=
−
μ
0
J
μ
{\displaystyle \Box A^{\mu }\ {\stackrel {\mathrm {def} }{=}}\ \partial _{\beta }\partial ^{\beta }A^{\mu }\ {\stackrel {\mathrm {def} }{=}}\ {A^{\mu ,\beta }}_{\beta }=-\mu _{0}J^{\mu }}
(國際單位制)
◻
A
μ
=
d
e
f
∂
β
∂
β
A
μ
=
d
e
f
A
μ
,
β
β
=
−
4
π
c
J
μ
{\displaystyle \Box A^{\mu }\ {\stackrel {\mathrm {def} }{=}}\ \partial _{\beta }\partial ^{\beta }A^{\mu }\ {\stackrel {\mathrm {def} }{=}}\ {A^{\mu ,\beta }}_{\beta }=-{\frac {4\pi }{c}}J^{\mu }}
(厘米-克-秒制)
其中
J
μ
{\displaystyle J^{\mu }\,}
是四維電流密度 :
J
μ
=
(
c
ρ
,
J
)
{\displaystyle J^{\mu }=\left(c\rho ,\mathbf {J} \right)}
,
∂
∂
x
a
=
d
e
f
∂
a
=
d
e
f
,
a
=
d
e
f
(
∂
/
∂
c
t
,
∇
)
{\displaystyle {\partial \over {\partial x^{a}}}\ {\stackrel {\mathrm {def} }{=}}\ \partial _{a}\ {\stackrel {\mathrm {def} }{=}}\ {}_{,a}\ {\stackrel {\mathrm {def} }{=}}\ (\partial /\partial ct,\nabla )}
是四維梯度 ,而電磁四維勢 為
A
μ
=
(
φ
,
A
c
)
{\displaystyle A^{\mu }=(\varphi ,\mathbf {A} c)}
(國際單位制)
A
μ
=
(
φ
,
A
)
{\displaystyle A^{\mu }=(\varphi ,\mathbf {A} )}
(厘米-克-秒制)
勞侖次規範為
∂
μ
A
μ
=
0
{\displaystyle \partial _{\mu }A^{\mu }=0}
.
這裡
◻
=
∂
β
∂
β
=
∇
2
−
1
c
2
∂
2
∂
t
2
{\displaystyle \Box =\partial _{\beta }\partial ^{\beta }=\nabla ^{2}-{1 \over c^{2}}{\frac {\partial ^{2}}{\partial t^{2}}}}
是達朗貝爾算符 。
彎曲時空
電磁波方程式在彎曲時空中需要做兩處修正,分別是偏導數被替換為協變導數 ,以及增加了一項有關時空曲率的項。在國際單位制下
−
A
α
;
β
β
+
R
α
β
A
β
=
μ
0
J
α
{\displaystyle -{A^{\alpha ;\beta }}_{\beta }+{R^{\alpha }}_{\beta }A^{\beta }=\mu _{0}J^{\alpha }}
其中
R
α
β
{\displaystyle {R^{\alpha }}_{\beta }}
是里奇曲率張量 。 這裡分號表示對角標求協變導數。對於厘米-克-秒制下的方程式,需要用
4
π
/
c
{\displaystyle 4\pi /c}
替換真空磁導率 。
這裡假設勞侖次規範在彎曲時空中的推廣為
A
μ
;
μ
=
0
{\displaystyle {A^{\mu }}_{;\mu }=0}
非齊次電磁波方程式的解
在波源周圍沒有邊界條件 的情形下,非齊次波方程式在厘米-克-秒制下的解為
φ
(
r
,
t
)
=
∫
δ
(
t
′
+
|
r
−
r
′
|
c
−
t
)
|
r
−
r
′
|
ρ
(
r
′
,
t
′
)
d
3
r
′
d
t
′
{\displaystyle \varphi (\mathbf {r} ,t)=\int {{\delta \left(t'+{{\left|\mathbf {r} -\mathbf {r} '\right|} \over c}-t\right)} \over {\left|\mathbf {r} -\mathbf {r} '\right|}}\rho (\mathbf {r} ',t')d^{3}r'dt'}
以及
A
(
r
,
t
)
=
∫
δ
(
t
′
+
|
r
−
r
′
|
c
−
t
)
|
r
−
r
′
|
J
(
r
′
,
t
′
)
c
d
3
r
′
d
t
′
{\displaystyle \mathbf {A} (\mathbf {r} ,t)=\int {{\delta \left(t'+{{\left|\mathbf {r} -\mathbf {r} '\right|} \over c}-t\right)} \over {\left|\mathbf {r} -\mathbf {r} '\right|}}{\mathbf {J} (\mathbf {r} ',t') \over c}d^{3}r'dt'}
其中
δ
(
t
′
+
|
r
−
r
′
|
c
−
t
)
{\displaystyle {\delta \left(t'+{{\left|\mathbf {r} -\mathbf {r} '\right|} \over c}-t\right)}}
是狄拉克δ函數 。
對於國際單位制,
ρ
→
ρ
4
π
ε
0
{\displaystyle \rho \rightarrow {\rho \over {4\pi \varepsilon _{0}}}}
J
→
μ
0
4
π
J
{\displaystyle \mathbf {J} \rightarrow {\mu _{0} \over {4\pi }}\mathbf {J} }
.
對於勞侖茲-黑維塞單位制,
ρ
→
ρ
4
π
{\displaystyle \rho \rightarrow {\rho \over {4\pi }}}
J
→
1
4
π
J
{\displaystyle \mathbf {J} \rightarrow {1 \over {4\pi }}\mathbf {J} }
.
這些解被稱作推遲解,它們表示的是一族由波源向外發出的並從現在向未來傳播的球面電磁波的線性疊加 。
此外還有所謂超前解,表示為
φ
(
r
,
t
)
=
∫
δ
(
t
′
−
|
r
−
r
′
|
c
−
t
)
|
r
−
r
′
|
ρ
(
r
′
,
t
′
)
d
3
r
′
d
t
′
{\displaystyle \varphi (\mathbf {r} ,t)=\int {{\delta \left(t'-{{\left|\mathbf {r} -\mathbf {r} '\right|} \over c}-t\right)} \over {\left|\mathbf {r} -\mathbf {r} '\right|}}\rho (\mathbf {r} ',t')d^{3}r'dt'}
以及
A
(
r
,
t
)
=
∫
δ
(
t
′
−
|
r
−
r
′
|
c
−
t
)
|
r
−
r
′
|
J
(
r
′
,
t
′
)
c
d
3
r
′
d
t
′
{\displaystyle \mathbf {A} (\mathbf {r} ,t)=\int {{\delta \left(t'-{{\left|\mathbf {r} -\mathbf {r} '\right|} \over c}-t\right)} \over {\left|\mathbf {r} -\mathbf {r} '\right|}}{\mathbf {J} (\mathbf {r} ',t') \over c}d^{3}r'dt'}
.
它們表示的是一族由波源向外發出的並從未來向現在傳播的球面電磁波的線性疊加。
參見
參考文獻
電磁學
期刊論文
James Clerk Maxwell, "A Dynamical Theory of the Electromagnetic Field ", Philosophical Transactions of the Royal Society of London 155 , 459-512 (1865). (This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society.)
本科水平教科書
Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998. ISBN 0-13-805326-X .
Tipler, Paul. Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.) . W. H. Freeman. 2004. ISBN 0-7167-0810-8 .
Edward M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1985).
Hermann A. Haus and James R. Melcher, Electromagnetic Fields and Energy (Prentice-Hall, 1989) ISBN 0-13-249020-X
Banesh Hoffman, Relativity and Its Roots (Freeman, New York, 1983).
David H. Staelin, Ann W. Morgenthaler, and Jin Au Kong, Electromagnetic Waves (Prentice-Hall, 1994) ISBN 0-13-225871-4
Charles F. Stevens, The Six Core Theories of Modern Physics , (MIT Press, 1995) ISBN 0-262-69188-4 .
研究生水平教科書
Jackson, John D. Classical Electrodynamics (3rd ed.). Wiley. 1998. ISBN 0-471-30932-X .
Landau, L. D. , The Classical Theory of Fields (Course of Theoretical Physics: Volume 2), (Butterworth-Heinemann: Oxford, 1987).
Maxwell, James C. A Treatise on Electricity and Magnetism . Dover. 1954. ISBN 0-486-60637-6 .
Charles W. Misner, Kip S. Thorne , John Archibald Wheeler , Gravitation , (1970) W.H. Freeman, New York; ISBN 0-7167-0344-0 . (Provides a treatment of Maxwell's equations in terms of differential forms.)
向量微積分
H. M. Schey, Div Grad Curl and all that: An informal text on vector calculus , 4th edition (W. W. Norton & Company, 2005) ISBN 0-393-92516-1 .