跳至內容

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

鉝 116Lv
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) (預測為鹵素) (預測為惰性氣體)




(Uhh)
概況
名稱·符號·序數鉝(Livermorium)·Lv·116
元素類別未知
可能為貧金屬
·週期·16·7·p
標準原子質量[293]
電子組態[Rn] 5f14 6d10 7s2 7p4
(預測[1]
2, 8, 18, 32, 32, 18, 6
(預測)
鉝的電子層(2, 8, 18, 32, 32, 18, 6 (預測))
鉝的電子層(2, 8, 18, 32, 32, 18, 6
(預測))
歷史
發現聯合核研究所勞倫斯利弗莫爾國家實驗室(2000年)
命名勞倫斯利弗莫爾國家實驗室[2]
物理性質
物態固體(預測)[1][3]
密度(接近室溫
12.9(預測)[1] g·cm−3
汽化熱42(預測)[4] kJ·mol−1
原子性質
氧化態2, 4(預測)[1]
游離能第一:723.6(預測)[1] kJ·mol−1
第二:1330(預測)[4] kJ·mol−1
第三:2850(預測)[4] kJ·mol−1
原子半徑183(預測)[4] pm
共價半徑175(預測)[5] pm
雜項
CAS編號54100-71-9
同位素
主條目:鉝的同位素
同位素 豐度 半衰期t1/2 衰變
方式 能量MeV 產物
290Lv 人造 毫秒 α 11.00[6] 286Fl
291Lv 人造 26 毫秒 α 10.89[6] 287Fl
292Lv 人造 16 毫秒 α 10.80[6] 288Fl
293Lv 人造 70 毫秒 α 10.67[6] 289Fl

ㄌㄧˋ[7][8](英語:Livermorium),是一種人工合成化學元素,其化學符號Lv原子序數為116。鉝是一種放射性極強的超重元素,所有同位素半衰期都極短,極為不穩定,其最長壽的已知同位素為鉝-293,半衰期僅約60毫秒。鉝不出現在自然界中,只能在實驗室內以粒子加速器人工合成,於2000年用(48Ca)離子撞擊而發現。至今約有30個鉝原子被探測到,其中一些為直接合成的,其餘則是衰變產物

鉝元素是以美國勞倫斯利佛摩國家實驗室(英語:Lawrence Livermore National Laboratory,LLNL)命名,該實驗室與俄羅斯杜布納杜布納聯合原子核研究所合作,在西元2000至2006年之間的實驗中發現了此元素。該實驗室的名稱中包含了它所在的城市之名,即加利福尼亞州利佛摩;而該城市是以農場主兼地主羅伯特·利佛摩英語Robert Livermore(英語:Robert Livermore)所命名。此元素的名稱在西元2012年5月30日被IUPAC採用。[2]

元素週期表中,鉝是位於p區錒系後元素,屬於第7週期第16族(氧族),是已知最重的氧族成員。由於沒有足夠穩定的同位素,因此目前未能通過化學實驗來驗證鉝的性質是否符合的較重同族元素。根據計算,鉝的一些特性與其同族的較輕元素(、釙)相近,且屬於後過渡金屬,儘管計算也顯示鉝的某些性質可能和同族元素有較大差異。

概論

超重元素的合成

核融合圖示
核融合反應的圖示。兩個原子核融合成一個,並發射出一個中子。在這一刻,這個反應和用來創造新元素的反應是相似的,唯一可能的區別是它有時會釋放幾個中子,或者根本不釋放中子。
外部影片連結
video icon 基於澳大利亞國立大學的計算,核融合未成功的可視化[9]

超重元素[a]原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[15]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[16]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[16]

不過,只是靠得足夠近不足以使兩個原子核融合:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[16][17]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[16]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[16]

兩個原子核融合產生的原子核處於非常不穩定,[16]被稱為複合原子核英語compound nucleus激發態[19]複合原子核為了達到更穩定的狀態,可能會直接裂變[20]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[20]原子核只有在10−14秒內不衰變IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[21][d]

衰變和探測

粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[23]在分離室中,新的原子核會從其它核種(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器英語Semiconductor detector後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[23]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[26]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[23]

原子核的穩定性源自於強核力,但強核力的作用距離很短,隨著原子核越來越大,強核力對最外層的核子質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[27]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[28][29]超重元素理論預測[30]及實際觀測到[31]的主要衰變方式,即α衰變自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核種都有超過210個核子,[33]而主要通過自發裂變衰變的最輕核種有238個核子。[31]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[28][29]

Apparatus for creation of superheavy elements
基於在杜布納聯合原子核研究所中設置的杜布納充氣反衝分離器,用於產生超重元素的裝置方案。在檢測器和光束聚焦裝置內的軌跡會因為前者的磁偶極英語Magnetic dipole和後者的四極磁體英語Quadrupole magnet而改變。[34]

放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[35]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[29]隨著原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素到102號元素下降了23個數量級,[36]從90號元素到100號元素下降了30個數量級。[37]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘英語Fission barrier會消失,因此自發裂變會立即發生。[29][38]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[29][38]隨後的發現表明預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[39]對較輕的超重核種[40]以及那些更接近穩定島的核種[36]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]

α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[23]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核種。[j]

嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核種確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]

歷史

失敗的合成嘗試

對116號元素的第一次搜尋,是由Ken Hulet與他的團隊在西元1977年於勞倫斯利佛摩國家實驗室(LLNL)執行,他們利用了248Cm與48Ca的反應,但當時偵測不到任何鉝原子。[51]1978年,尤里·奧加涅相與他的團隊也在杜布納聯合原子核研究所的Flerov Laboratory of Nuclear Reactions (FLNR)嘗試做該反應,但也沒有成功。1985年,柏克萊與Peter Armbruster在GSI的團隊合作實驗,實驗結果也是否定的,該次實驗中計算出的截面極限是10–100皮靶。然而,在杜布納,與48Ca有關的反應持續在進行(48Ca已被證明在用natPb+48Ca的反應合成的實驗中很有用)。西元1989年,超重元素分離器被開發出來。西元1990年,開始了靶材料的尋找及與LLNL的合作。西元1996年,開始生產更高強度的48Ca粒子束。西元1990年代,完成了靈敏度高出3個數量級的長期實驗的準備。這些工作直接導致了有錒系元素靶與48Ca的反應中,元素112至118的新同位素的產生,也導致了元素週期表中最重的五個元素(、鉝、)的發現。[52]

1995年,Sigurd Hofmann英語Sigurd Hofmann領導的國際團隊在德國達姆施塔特Gesellschaft für Schwerionenforschung (GSI) 嘗試合成116號元素。他們執行鉛-208的靶與硒-82的入射粒子之間的輻射捕獲反應。在反應之中,複合核以純粹的伽馬發射(不發射中子)而去激發。此反應並無偵測到116號元素的原子。[53]

1998年尾,波蘭物理學家羅伯特·斯莫蘭楚克英語Robert Smolańczuk發表了合成包括118和116號元素在內的超重元素的計算。[54]計算顯示在嚴格控制的環境下,的核融合可以產生這兩個元素。[54]1999年,勞倫斯伯克利國家實驗室利用這些預測,宣布合成了118和116號元素,並把論文發布到《物理評論快報》,[55]不久後結果登上《科學》。[56]研究團隊宣稱成功完成以下核反應

86
36
Kr
+ 208
82
Pb
293
118
Og
+
n
293
118
Og
289
116
Lv
+ α

翌年,由於其它實驗室及勞倫斯伯克利國家實驗室本身都未能重複這些結果,研究團隊因此撤稿。[57]2002年6月,實驗室主任宣布原先兩個元素的發現結果建立在第一作者維克托·尼諾夫所假造的數據上。[58][59]

發現

2000年7月19日,位於俄羅斯杜布納聯合核研究所(JINR)的科學家使用48Ca離子撞擊248Cm目標,探測到鉝原子的一次α衰變,能量為10.54 MeV。結果於2000年12月發佈。[60]由於292Lv的衰變產物和已知的288Fl關聯,因此這次衰變起初被認為源自292Lv。然而其後科學家把288Fl更正為289Fl,所以衰變來源292Lv也順應更改到293Lv。他們於2001年4至5月進行了第二次實驗,再發現兩個鉝原子。[61]

在同樣的實驗裏,研究人員探測到的衰變,並將此次衰變活動指定到289Fl。[61]在重複進行相同的實驗後,他們並沒有觀測到該衰變反應。這可能是來自鉝的同核異能素293bLv的衰變,或是293aLv的一條較罕見的衰變支鏈。這須進行進一步研究才能確認。

研究團隊在2005年4月至5月重複進行實驗,並探測到8個鉝原子。衰變數據證實所發現的同位素293Lv。同時他們也通過4n通道第一次觀測到292Lv。[6]

2009年5月,聯合工作組在報告中指明,發現了的同位素包括283Cn。[62]283Cn是291Lv的衰變產物,因此該報告意味著291Lv也被正式發現(見下)。

2011年6月11日,IUPAC證實了鉝的存在。[63]

命名

鉝的原文名稱Livermorium(Lv),是IUPAC在2012年5月30日正式命名的[64]。之前IUPAC根據系統命名法將之命名為Ununhexium(Uuh)[65]。科學家通常稱之為「元素116」(或E116)。

此前鉝被提議以俄羅斯莫斯科州(Moscow Oblast)名為Moscovium,但由於元素114和116是俄羅斯和美國勞倫斯利福莫耳國家實驗室研究人員合作的產物,而元素114已經根據俄羅斯的要求命名,因此元素116最後以實驗室所在地美國利弗莫爾市(Livermore)命名為Livermorium(Lv)[66][67]

2012年6月2日,中華民國國家教育研究院化學名詞審譯委員會將此元素暫譯為[7][8] 2013年7月,中華人民共和國全國科學技術名詞審定委員會通過以(讀音同「立」)為中文定名。[8]

同位素與核特性

目前已知的鉝的同位素共有5個,質量數為288及290-293,全部都具有極高的放射性半衰期極短,極為不穩定。愈重的同位素穩定性愈高,因為它們更接近穩定島的中心,其中最長壽的同位素為鉝-293,半衰期為53毫秒,也是目前發現最重的鉝同位素。此外,未經證實的更重同位素鉝-294可能也具有較長的半衰期,約為54毫秒。[68]

預測性質

由於鉝的生產極為昂貴且每次的產量皆極少,產出的鉝又會在極短時間內發生衰變,因此目前除了核特性外,尚未利用實驗測量過任何鉝或其化合物的化學屬性,只能通過理論來預測。[69]

物理與原子性質

鉝是氧族元素,在元素週期表中位於、釙之下。所有氧族元素都有六粒價電子電子構型ns2np4。鉝預測也和其它氧族元素一樣有六粒價電子,電子構型7s27p4[1]因此性質與較輕的同族元素相似。不過,由於鉝的電子速度比同族元素快,接近光速,因此變得明顯的自旋-軌域作用會影響鉝的性質。[70]它降低了鉝原子7s、7p電子能階的能量,使它們穩定,但有兩個7p電子能階比另外四個更穩定。[71]使7s電子變得穩定的現象叫惰性電子對效應,使7p電子能階分裂成較穩定與較不穩定部分的現象則叫亞層分裂。計算化學家把較穩定與較不穩定部分分別稱為7p1/2和7p3/2。7p1/2電子能階會變成第二對惰性電子對,而7p3/2電子能階則可容易地參與化學反應。[1][70]大部分理論預測都會把鉝的電子構型寫成7s2
7p2
1/2
7p2
3/2
,以顯示7p電子能階的分裂。[1]

鉝的惰性電子對效應應該比釙強,因此其+2氧化態會比+4氧化態穩定。鉝預測的游離能反映了這點,第三游離能(游離了惰性的7p1/2電子)會遠高於第二游離能,而第五游離能也會遠高於第四游離能。[4]鉝的7s電子的穩定性將會使它無法達到+6氧化態。[1]鉝的熔點沸點預測會延續氧族元素的趨勢,熔點比釙高,但沸點比釙低。[3]它有與釙類似的α相和β相,密度預測比釙高(α-Lv 12.9 g/cm3,α-Po 9.2 g/cm3)。[4][72]鉝的類氫原子(只剩一粒電子的原子,即Lv115+)中的電子速度極快,會由於相對論效應而有靜止電子1.86倍的重量。作為比較,釙和碲的這個值分別是1.26和1.080。[70]

化學屬性

氧化態

鉝預計為7p系非金屬的第4個元素,並是元素週期表中16族(VIA)最重的成員,位於之下。儘管它是7p系元素中理論研究最少的,它的化學性質預測類似釙。[4]這一族的氧化態為+VI,缺少d軌域,無法形成超價分子除外。氧的最高氧化態只到 +2 ,存在於OF2(理論上存在的三氟𨦡的氧化態為 +4)的氧化態都是+IV,穩定性由S(IV)和Se(IV)的還原性到Po(IV)的氧化性。Te(IV)是碲最穩定的氧化態。這表明了相對論效應,尤其是惰性電子對效應對元素性質的影響越來越大。因此,隨著元素週期表中氧族元素的下降,較高氧化態的穩定性也跟著下降。 [70]因此,鉝應有不穩定,有氧化性的+IV態,以及最穩定的+II態。同族其他元素亦能產生−II態,如氧化物硫化物硒化物碲化物釙化物。鉝的+2氧化態應該與一樣容易形成, 而+4氧化態只有在和電負度極高的基團反應才能得到,例如四氟化鉝 (LvF4)。[1]鉝的 +6 氧化態應該不存在,因為7s軌域非常穩定,使得鉝可能只有四顆價電子。[4]較輕的氧族元素可以形成−2氧化態,存在於氧化物硫化物硒化物碲化物釙化物中。由於鉝的 7p3/2 殼層變得不穩定,它的−2氧化態會非常不穩定。這使得鉝應該只能形成陽離子,[1]儘管與釙相比,鉝更大的殼層和能量分裂會使得Lv2-的不穩定程度略低於預期。 [70]

化學特性

鉝的化學特性能從的特性推算出來。因此,它應在氧化後產生二氧化鉝(LvO2)。三氧化鉝(LvO3)也有可能產生,但可能性較低。在氧化鉝(LvO)中,鉝會展現出+II氧化態的穩定性。氟化後它可能會產生四氟化鉝(LvF4)和/或二氟化鉝(LvF2)。氯化溴化後會產生二氯化鉝(LvCl2)和二溴化鉝(LvBr2)。對其氧化後一定不會產生比二碘化鉝(LvI2)更重的化合物,甚至可能完全不發生反應。[來源請求]

氫化鉝 (LvH2) 將會是最重的氧族元素氫化物,也是H2OH2SH2SeH2TePoH2)的同系物。釙化氫比大部分金屬氫化物共價,因為釙介於金屬類金屬之間,還有一些非金屬的性質。它的性質介於鹵化氫,像是氯化氫(HCl)和金屬氫化物,像是甲錫烷 (SnH4)之間。 氫化鉝將會繼續這個趨勢 。比起是一種鉝化物,它更可能是一種氫化物,不過它還是一種分子型化合物。[73] 自旋-軌域作用會使Lv–H鍵比單純靠元素週期律推測的長,也會使H–Lv–H的鍵角比預測的更大。從理論上講,這是因為未被占用的8s軌域能量較低,並且可以與鉝的7p軌域發生軌域混成[73] 這種現象被稱為「超價軌域混成」, [73] 在週期表里並不少見。例如,分子型二氟化鈣中的原子有4s和3d參與的軌域混成。 [74] 鉝的二鹵化物將會是直線形的,不過更輕的氧族元素的二鹵化物是角形的。[75]

參見

注釋

  1. ^ 核物理學中,原子序高的元素可稱為重元素,如82號元素。超重元素通常指原子序大於103(也有大於100[10]或112[11]的定義)的元素。有定義認為超重元素等同於錒系後元素,因此認為還未發現的超錒系元素不是超重元素。[12]
  2. ^ 2009年,由尤里·奧加涅相引領的團隊發表了他們嘗試通過對稱的136Xe + 136Xe反應合成𨭆的結果。他們未能在這個反應中觀察到單個原子,因此設置截面,即發生核反應的概率的上限為2.5 pb[13]作為比較,發現𨭆的反應208Pb + 58Fe的截面為19+19
    -11
     pb。[14]
  3. ^ 施加到粒子束以加速它的能量也會影響截面。舉個例子,在28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    反應中,截面會從12.3 MeV的370 mb變化成18.3 MeV的160 mb,最高值是13.5 MeV的380 mb。[18]
  4. ^ 這個值也是普遍接受的複合原子核壽命上限。[22]
  5. ^ 分離基於產生的原子核會比未反應的粒子束更慢地通過目標這一點。分離器中包含電場和磁場,它們對運動粒子的影響會因粒子的特定速度而被抵消。[24]飛行時間質譜法英語Time-of-flight mass spectrometry和反衝能量的測量也有助於分離,兩者結合可以估計原子核的質量。[25]
  6. ^ 不是所有放射性衰變都是因為靜電排斥力導致的,β衰變便是弱核力導致的。[32]
  7. ^ 早在1960年代,人們就已經知道原子核的基態在能量和形狀上的不同,也知道核子數為幻數時,原子核就會更穩定。然而,當時人們假設超重元素的原子核因為過於畸形,無法形成核子結構。[36]
  8. ^ 超重元素的原子核的質量通常無法直接測量,所以是根據另一個原子核的質量間接計算得出的。[41]2018年,勞倫斯伯克利國家實驗室首次直接測量了超重原子核的質量,[42]它的質量是根據轉移後原子核的位置確定的(位置有助於確定其軌跡,這與原子核的質荷比有關,因為轉移是在有磁鐵的情況下完成的)。[43]
  9. ^ 如果在真空中發生衰變,那麼由於孤立系統在衰變前後的總動量必須保持守恆,衰變產物也將獲得很小的速度。這兩個速度的比值以及相應的動能比值與兩個質量的比值成反比。衰變能量等於α粒子和衰變產物的已知動能之和。[33]這些計算也適用於實驗,但不同之處在於原子核在衰變後不會移動,因為它與探測器相連。
  10. ^ 自發裂變是由蘇聯科學家格奧爾基·弗廖羅夫發現的,[44]而他也是杜布納聯合原子核研究所的科學家,所以自發裂變就成了杜布納聯合原子核研究所經常討論的課題。[45]勞倫斯伯克利國家實驗室的科學家認為自發裂變的信息不足以聲稱合成元素,他們認為對自發裂變的研究還不夠充分,無法將其用於識別新元素,因為很難確定複合原子核是不是僅噴射中子,而不是質子或α粒子等帶電粒子。[22]因此,他們更喜歡通過連續的α衰變將新的同位素與已知的同位素聯繫起來。[44]
  11. ^ 舉個例子,1957年,瑞典斯德哥爾摩省斯德哥爾摩的諾貝爾物理研究所錯誤鑑定102號元素。[46]早先沒有關於該元素發現的明確聲明,所以瑞典、美國、英國發現者將其命名為nobelium。後來證明該鑑定是錯誤的。[47]次年,勞倫斯伯克利國家實驗室無法重現瑞典的結果。他們宣布合成了該元素,但後來也被駁回。[47]杜布納聯合原子核研究所堅持認為他們第一個發現該元素,並建議把新元素命名為joliotium,[48]而這個名稱也沒有被接受(他們後來認為102號元素的命名是倉促的)。[49]由於nobelium這個名稱在三十年間已被廣泛使用,因此沒有更名。[50]

參考資料

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (編). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1. 
  2. ^ 2.0 2.1 Element 114 is Named Flerovium and Element 116 is Named Livermorium. IUPAC. 30 May 2012 [2012-06-01]. (原始內容存檔於2012-06-02). 
  3. ^ 3.0 3.1 Bonchev, Danail; Kamenska, Verginia. Predicting the Properties of the 113–120 Transactinide Elements. Journal of Physical Chemistry (American Chemical Society). 1981, 85 (9): 1177–1186 [2023-12-22]. doi:10.1021/j150609a021. (原始內容存檔於2015-12-22). 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Fricke, Burkhard. Superheavy elements: a prediction of their chemical and physical properties. Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 1975, 21: 89–144 [2013-10-04]. ISBN 978-3-540-07109-9. doi:10.1007/BFb0116498 (英語). 
  5. ^ Chemical Data. Livermorium - Lv頁面存檔備份,存於網際網路檔案館), Royal Chemical Society
  6. ^ 6.0 6.1 6.2 6.3 6.4 Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Gikal, B.; Mezentsev, A.; Iliev, S.; Subbotin, V.; Sukhov, A.; Voinov, A.; Buklanov, G.; Subotic, K.; Zagrebaev, V.; Itkis, M.; Patin, J.; Moody, K.; Wild, J.; Stoyer, M.; Stoyer, N.; Shaughnessy, D.; Kenneally, J.; Wilk, P.; Lougheed, R.; Il』kaev, R.; Vesnovskii, S. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca (PDF). Physical Review C. 2004, 70 (6): 064609. Bibcode:2004PhRvC..70f4609O. doi:10.1103/PhysRevC.70.064609. 
  7. ^ 7.0 7.1 中國化學會第12次會議決議 (PDF). chemistry.org.tw. [2013-05-30]. (原始內容存檔 (PDF)於2013-09-21). 
  8. ^ 8.0 8.1 8.2 114、116号元素中文定名研讨会在京召开. 全國科學技術名詞審定委員會. 2013-07-23 [2014-05-22]. (原始內容存檔於2014-11-07). 
  9. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 編. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061可免費查閱. 
  10. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始內容存檔於2021-05-15) (英語). 
  11. ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始內容存檔於2015-09-11). 
  12. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (編). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英語). 
  13. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英語). 
  14. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始內容 (PDF)存檔於7 June 2015). 
  15. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始內容存檔於2019-12-11). 
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始內容存檔於2020-04-23) (俄語). 
  17. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始內容存檔於2020-03-17) (英語). 
  18. ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. Cross sections for some (n, p) and (n, α) reactions. Nuclear Physics. 1959, 10: 226–234. doi:10.1016/0029-5582(59)90211-1 (英語). 
  19. ^ Nuclear Reactions (PDF): 7–8. [2020-01-27]. (原始內容存檔 (PDF)於2020-11-30).  Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Nuclear Reactions. Modern Nuclear Chemistry. John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英語). 
  20. ^ 20.0 20.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927. 
  21. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始內容存檔 (PDF)於2021-10-11) (英語). 
  22. ^ 22.0 22.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-27]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始內容存檔於2021-11-27). 
  23. ^ 23.0 23.1 23.2 23.3 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始內容存檔於2020-04-21) (英語). 
  24. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  25. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  26. ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420: 3. ISSN 1742-6588. doi:10.1088/1742-6596/420/1/012001可免費查閱. 
  27. ^ Beiser 2003,第432頁.
  28. ^ 28.0 28.1 Pauli, N. Alpha decay (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-28). 
  29. ^ 29.0 29.1 29.2 29.3 29.4 Pauli, N. Nuclear fission (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-10-21). 
  30. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320可免費查閱. 
  31. ^ 31.0 31.1 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae. 
  32. ^ Beiser 2003,第439頁.
  33. ^ 33.0 33.1 Beiser 2003,第433頁.
  34. ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. On the volatility of nihonium (Nh, Z = 113). The European Physical Journal A. 2017, 53 (7): 158. ISSN 1434-6001. doi:10.1140/epja/i2017-12348-8 (英語). 
  35. ^ Beiser 2003,第432–433頁.
  36. ^ 36.0 36.1 36.2 Oganessian, Yu. Nuclei in the "Island of Stability" of Superheavy Elements. Journal of Physics: Conference Series. 2012, 337: 012005–1–012005–6. ISSN 1742-6596. doi:10.1088/1742-6596/337/1/012005可免費查閱. 
  37. ^ Moller, P.; Nix, J. R. Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. 1994 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-01). 
  38. ^ 38.0 38.1 Oganessian, Yu. Ts. Superheavy elements. Physics World. 2004, 17 (7): 25–29 [2020-02-16]. doi:10.1088/2058-7058/17/7/31. (原始內容存檔於2021-11-28). 
  39. ^ Schädel, M. Chemistry of the superheavy elements. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015, 373 (2037): 20140191. ISSN 1364-503X. PMID 25666065. doi:10.1098/rsta.2014.0191可免費查閱 (英語). 
  40. ^ Hulet, E. K. Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 1989. Bibcode:1989nufi.rept...16H. 
  41. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始內容存檔於2021-11-28) (英語). 
  42. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英語). 
  43. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始內容存檔於2021-11-28) (英語). 
  44. ^ 44.0 44.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始內容存檔於2021-11-28) (英語). 
  45. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07]. (原始內容存檔於2011-08-23) (俄語).  Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄語). 
  46. ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始內容存檔於2021-03-08) (英語). 
  47. ^ 47.0 47.1 Kragh 2018,第38–39頁.
  48. ^ Kragh 2018,第40頁.
  49. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始內容存檔 (PDF)於2013-11-25) (英語). 
  50. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始內容存檔 (PDF)於2021-10-11) (英語). 
  51. ^ Hulet, E. K.; Lougheed, R.; Wild, J.; Landrum, J.; Stevenson, P.; Ghiorso, A.; Nitschke, J.; Otto, R.; et al. Search for Superheavy Elements in the Bombardment of 248Cm with48Ca. Physical Review Letters. 1977, 39 (7): 385–389. Bibcode:1977PhRvL..39..385H. doi:10.1103/PhysRevLett.39.385. 
  52. ^ Armbruster, P.; Agarwal, YK; Brüchle, W; Brügger, M; Dufour, JP; Gaggeler, H; Hessberger, FP; Hofmann, S; et al. Attempts to Produce Superheavy Elements by Fusion of 48Ca with 248Cm in the Bombarding Energy Range of 4.5–5.2 MeV/u. Physical Review Letters. 1985, 54 (5): 406–409. Bibcode:1985PhRvL..54..406A. PMID 10031507. doi:10.1103/PhysRevLett.54.406. 
  53. ^ Hofmann, Sigurd. The discovery of elements 107 to 112 (PDF). Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. 1 December 2016 [2019-07-13]. doi:10.1051/epjconf/201613106001. (原始內容存檔 (PDF)於2021-02-01). 
  54. ^ 54.0 54.1 Smolanczuk, R. Production mechanism of superheavy nuclei in cold fusion reactions. Physical Review C. 1999, 59 (5): 2634–2639. Bibcode:1999PhRvC..59.2634S. doi:10.1103/PhysRevC.59.2634. 
  55. ^ Ninov, Viktor; Gregorich, K.; Loveland, W.; Ghiorso, A.; Hoffman, D.; Lee, D.; Nitsche, H.; Swiatecki, W.; Kirbach, U.; Laue, C.; et al. Observation of Superheavy Nuclei Produced in the Reaction of 86
    Kr
    with 208
    Pb
    . Physical Review Letters. 1999, 83 (6): 1104–1107 [2023-12-22]. Bibcode:1999PhRvL..83.1104N. doi:10.1103/PhysRevLett.83.1104. (原始內容存檔於2023-07-18).
     (已撤稿,見doi:10.1103/PhysRevLett.89.039901)
  56. ^ Service, R. F. Berkeley Crew Bags Element 118. Science. 1999, 284 (5421): 1751. S2CID 220094113. doi:10.1126/science.284.5421.1751. 
  57. ^ Public Affairs Department. Results of element 118 experiment retracted. Berkeley Lab. 2001-07-21 [2008-01-18]. (原始內容存檔於2008-01-29). 
  58. ^ Dalton, R. Misconduct: The stars who fell to Earth. Nature. 2002, 420 (6917): 728–729. Bibcode:2002Natur.420..728D. PMID 12490902. S2CID 4398009. doi:10.1038/420728a. 
  59. ^ Element 118 disappears two years after it was discovered. Physicsworld.com (August 2, 2001). Retrieved on 2012-04-02.
  60. ^ Oganessian, Yu. Ts. Observation of the decay of ^{292}116. Physical Review C. 2000, 63: 011301. doi:10.1103/PhysRevC.63.011301. 
  61. ^ 61.0 61.1 "Confirmed results of the 248Cm(48Ca,4n)292116 experiment"頁面存檔備份,存於網際網路檔案館), Patin et al., LLNL report (2003). Retrieved 2008-03-03
  62. ^ R.C.Barber; H.W.Gaeggeler;P.J.Karol;H. Nakahara; E.Verdaci; E. Vogt. Discovery of the element with atomic number 112 (PDF). Pure Appl. Chem. 2009, 81: 1331. doi:10.1351/PAC-REP-08-03-05. (原始內容 (IUPAC Technical Report)存檔於2009-06-17). 
  63. ^ IUPAC - Discovery of the Elements with Atomic Number 114 and 116. [2011-10-18]. (原始內容存檔於2011-06-04). 
  64. ^ Flerovium and Livermorium Join the Periodic Table. IUPAC. 2012-07-10 [2016-12-01]. (原始內容存檔於2017-03-29). 
  65. ^ J. Chatt. Recommendations for the Naming of Elements of Atomic Numbers Greater than 100. Pure Appl. Chem. 1979, 51: 381–384. doi:10.1351/pac197951020381. 
  66. ^ Russian Physicians Will Suggest to Name Element 116 Moscovium. rian.ru. 2011 [2011-05-08]. (原始內容存檔於2019-07-01). 
  67. ^ Jennifer Welsh. Two Elements Named: Livermorium and Flerovium. LiveScience. 2 December 2011 [2011-12-05]. (原始內容存檔於2021-02-09). 
  68. ^ Element 114 is Named Flerovium and Element 116 is Named Livermorium. IUPAC. 2012-05-31 [2012-05-31]. (原始內容存檔於2016-02-05) (英語). 
  69. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始內容存檔於2019-12-11). 
  70. ^ 70.0 70.1 70.2 70.3 70.4 Thayer, John S. Relativistic Effects and the Chemistry of the Heavier Main Group Elements. Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics 10. 2010: 83. ISBN 978-1-4020-9974-8. doi:10.1007/978-1-4020-9975-5_2. 
  71. ^ Faegri, K.; Saue, T. Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding. Journal of Chemical Physics. 2001, 115 (6): 2456. Bibcode:2001JChPh.115.2456F. doi:10.1063/1.1385366可免費查閱. 
  72. ^ Eichler, Robert. Gas phase chemistry with SHE – Experiments (PDF). cyclotron.tamu.edu. Texas A & M University. 2015 [27 April 2017]. (原始內容存檔 (PDF)於2023-03-29). 
  73. ^ 73.0 73.1 73.2 Nash, Clinton S.; Crockett, Wesley W. An Anomalous Bond Angle in (116)H2. Theoretical Evidence for Supervalent Hybridization.. The Journal of Physical Chemistry A. 2006, 110 (14): 4619–4621 [2020-11-07]. Bibcode:2006JPCA..110.4619N. PMID 16599427. doi:10.1021/jp060888z. (原始內容存檔於2020-10-26). 
  74. ^ Greenwood, Norman Neill; Earnshaw, Alan. Chemistry of the elements. 2016: 117. ISBN 978-0-7506-3365-9. OCLC 1040112384 (英語). 
  75. ^ Van WüLlen, C.; Langermann, N. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. The Journal of Chemical Physics. 2007, 126 (11): 114106. Bibcode:2007JChPh.126k4106V. PMID 17381195. doi:10.1063/1.2711197. 

參考書目

外部連結