萊默的歐拉函數問題
在數學上,萊默的歐拉函數問題(Lehmer's totient problem)指的是是否有合成數,其歐拉函數的值可整除。這問題迄今仍未得證。
已知,當且僅當是質數,故對於任何質數而言,有,且可整除;而德里克·亨利·萊默猜想說,沒有任何合成數,使得整除。[1]
歷史
- 萊默證明了說如果有這樣的合成數,那麼必然是奇數、必然是無平方因子數,且必然有至少七個不同的質因數()。此外這樣的數必然是個卡邁克爾數。
- 1980年,Cohen和Hagis證明了說,若這樣的存在,則且有至少14個不同的質因數()。[2]
- 1988年,Hagis證明了說若這樣的存在且可被3除盡,那麼且有至少298848個不同的質因數()。[3]這結果之後為Burcsi、Czirbusz和Farkas改進,他們證明了說若的存在且可被3除盡,那麼且有至少40000000個不同的質因數()。[4]
- 一個2011年的結果顯示,這問題小於的解的數量至多有個。[5]
參考資料
- Cohen, Graeme L.; Hagis, Peter, jun. On the number of prime factors of n if φ(n) divides n−1. Nieuw Arch. Wiskd. III Series. 1980, 28: 177–185. ISSN 0028-9825. Zbl 0436.10002.
- Guy, Richard K. Unsolved problems in number theory 3rd. Springer-Verlag. 2004. B37. ISBN 0-387-20860-7. Zbl 1058.11001.
- Hagis, Peter, jun. On the equation M⋅φ(n)=n−1. Nieuw Arch. Wiskd. IV Series. 1988, 6 (3): 255–261. ISSN 0028-9825. Zbl 0668.10006.
- Lehmer, D. H. On Euler's totient function. Bulletin of the American Mathematical Society. 1932, 38 (10): 745–751. ISSN 0002-9904. Zbl 0005.34302. doi:10.1090/s0002-9904-1932-05521-5 .
- Luca, Florian; Pomerance, Carl. On composite integers n for which . Bol. Soc. Mat. Mexicana. 2011, 17 (3): 13–21. ISSN 1405-213X. MR 2978700.
- Ribenboim, Paulo. The New Book of Prime Number Records 3rd. New York: Springer-Verlag. 1996. ISBN 0-387-94457-5. Zbl 0856.11001.
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav (編). Handbook of number theory I. Dordrecht: Springer-Verlag. 2006. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Burcsi, Péter; Czirbusz, Sándor; Farkas, Gábor. Computational investigation of Lehmer's totient problem (PDF). Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 2011, 35: 43–49 [2024-01-09]. ISSN 0138-9491. MR 2894552. Zbl 1240.11005. (原始內容存檔 (PDF)於2024-01-09).