用戶:Vhyun625/大腦中的語言處理
語言處理是指人類使用文字交流思想和感情的方式,以及這種交流方式是如何被處理和被理解的。語言處理是人類獨有的能力,即使是人類最親近的靈長類動物也不具備相同的語法理解或語法系統。 [1]
在整個 20 世紀中,大腦語言處理的主要模型[2]是Geschwind-Lichteim-Wernicke 模型,該模型主要建立於腦損傷患者的研究成果之上。在人們改進了應用於猴子和人類大腦研究的腦皮質內電生理記錄技術後,多種非侵入性技術相繼被發明出來,包括:fMRI 、PET、MEG 和 EEG 等。這時,人們發現了雙聽覺通路[3] [4],並提出了雙流假說模型。根據該模型,聽覺皮質會以兩種通路方式聯結到額葉,兩條通路各負責不同的語言元素。聽覺腹側流(auditory ventral stream,AVS)通路負責聲音識別,因此被稱為內容通路(what pathway)。人類和非人靈長類動物的聽覺背側流(auditory dorsal stream,ADS)則負責聲音定位,因此被稱為空間通路(where pathway)。在人類左半腦的空間通路中,它還與語音產生、語音重複、唇讀、語音工作記憶和長期記憶有關。根據語言進化的「從空間至內容」模型,聽覺背側流的功能如此廣泛,是因為每種功能揭示了語言進化的不同階段。
聽覺流會在聽神經處一分為二,其中前分支會進入腦幹的耳蝸核前側,形成聽覺腹側流,而後分支會進入耳蝸核背側和後腹側,形成聽覺背側流。 [5]
早期的神經語言學模型
目前的神經語言學模型
解剖學
在過去的二十年內,人們對於靈長類動物聲音的神經處理有了更深入的理解。通過早期記錄猴子聽覺皮質的神經訊號[6] [7] ,晚期的組織學染色[8] [9] [10]以及fMRI掃描的成果,[11]在初級聽覺皮質中發現了 3 個聽覺區域,此外周圍還有 9 個相關的聽覺區域(圖 1 左上角)。解剖學追蹤以及損傷研究也揭示了聽覺區域前後側有分離,前部初級聽區(區域 R-RT)投射到前聯想聽區(區域 AL-RTL),而後部初級聽區(區域 A1)投射到後聯想聽覺場(區域 CL-CM)。 [8] [12] [13] [14]最近,積累的證據表明人類和猴子的聽覺場之間存在同源性。在人類中,組織學染色研究揭示了Heschl 回的初級聽覺區域中有兩個獨立的聽覺區域, [15] [16]並通過用高解像度fMRI繪製人類初級聽覺區域的音調組織並將其與在猴子初級聽覺場,人類前初級聽覺場和猴子區域R(在人類中表示為區域hR)和人類後初級聽覺場和猴子區域A1(在人類中表示為區域hA1)之間建立了同源性。 [17] [18] [19] [20] [21]來自人類聽覺皮層的皮層內記錄進一步證明了與猴子聽覺皮層相似的連接模式。從聽覺皮層(顳上平面)的表面記錄報告,Heschl 前回(hR 區)主要投射到顳上回中前(mSTG-aSTG)和 Heschl 後回(hA1 區)主要投射到顳上回 (pSTG) 和顳平面(PT 區;圖 1 右上角)。 [22] [23]與從 hR 區域到 aSTG 和 hA1 到 pSTG 的連接一致的是對聲音識別受損(聽覺失認症)患者的fMRI研究,顯示 hR 和 aSTG 區域的雙側激活減少,但 mSTG 中的激活倖免- pSTG。 [24]這種連接模式也得到了一項研究的證實,該研究記錄了聽覺皮層側面的激活,並報告了在聽聲音時 pSTG 和 mSTG-aSTG 中同時不重疊的激活簇。 [25]
參考
[[Category:語言習得]] [[Category:神經科學]] [[Category:心理語言學]]
- ^ Seidenberg MS, Petitto LA. Communication, symbolic communication, and language: Comment on Savage-Rumbaugh, McDonald, Sevcik, Hopkins, and Rupert (1986). Journal of Experimental Psychology: General. 1987, 116 (3): 279–287. doi:10.1037/0096-3445.116.3.279.
- ^ Geschwind N. Disconnexion syndromes in animals and man. I. review. Brain. June 1965, 88 (2): 237–94. PMID 5318481. doi:10.1093/brain/88.2.237 .
- ^ Hickok G, Poeppel D. The cortical organization of speech processing. review. Nature Reviews. Neuroscience. May 2007, 8 (5): 393–402. PMID 17431404. S2CID 6199399. doi:10.1038/nrn2113.
- ^ Gow DW. The cortical organization of lexical knowledge: a dual lexicon model of spoken language processing. review. Brain and Language. June 2012, 121 (3): 273–88. PMC 3348354 . PMID 22498237. doi:10.1016/j.bandl.2012.03.005.
- ^ Pickles JO. Handbook of Clinical Neurology 129. 2015: 3–25. ISBN 978-0-444-62630-1. PMID 25726260. doi:10.1016/B978-0-444-62630-1.00001-9.
- ^ Bendor D, Wang X. Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology. August 2006, 16 (4): 391–9. PMC 4325365 . PMID 16842992. doi:10.1016/j.conb.2006.07.001.
- ^ Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science. April 1995, 268 (5207): 111–4. Bibcode:1995Sci...268..111R. PMID 7701330. doi:10.1126/science.7701330.
- ^ 8.0 8.1 de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. The Journal of Comparative Neurology. May 2006, 496 (1): 27–71. PMID 16528722. S2CID 38393074. doi:10.1002/cne.20923.
- ^ de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anatomical Record. May 2012, 295 (5): 800–21. PMC 3379817 . PMID 22461313. doi:10.1002/ar.22451.
- ^ Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America. October 2000, 97 (22): 11793–9. Bibcode:2000PNAS...9711793K. PMC 34351 . PMID 11050211. doi:10.1073/pnas.97.22.11793 .
- ^ Petkov CI, Kayser C, Augath M, Logothetis NK. Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biology. July 2006, 4 (7): e215. PMC 1479693 . PMID 16774452. doi:10.1371/journal.pbio.0040215.
- ^ Morel A, Garraghty PE, Kaas JH. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. The Journal of Comparative Neurology. September 1993, 335 (3): 437–59. PMID 7693772. S2CID 22872232. doi:10.1002/cne.903350312.
- ^ Rauschecker JP, Tian B. Mechanisms and streams for processing of "what" and "where" in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America. October 2000, 97 (22): 11800–6. Bibcode:2000PNAS...9711800R. PMC 34352 . PMID 11050212. doi:10.1073/pnas.97.22.11800 .
- ^ Rauschecker JP, Tian B, Pons T, Mishkin M. Serial and parallel processing in rhesus monkey auditory cortex. The Journal of Comparative Neurology. May 1997, 382 (1): 89–103. PMID 9136813. doi:10.1002/(sici)1096-9861(19970526)382:1<89::aid-cne6>3.3.co;2-y.
- ^ Sweet RA, Dorph-Petersen KA, Lewis DA. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. The Journal of Comparative Neurology. October 2005, 491 (3): 270–89. PMID 16134138. S2CID 40822276. doi:10.1002/cne.20702.
- ^ Wallace MN, Johnston PW, Palmer AR. Histochemical identification of cortical areas in the auditory region of the human brain. Experimental Brain Research. April 2002, 143 (4): 499–508. PMID 11914796. S2CID 24211906. doi:10.1007/s00221-002-1014-z.
- ^ Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl's gyrus. The Journal of Neuroscience. October 2011, 31 (40): 14067–75. PMC 6623669 . PMID 21976491. doi:10.1523/jneurosci.2000-11.2011 .
- ^ Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. NeuroImage. April 2010, 50 (3): 1202–11. PMC 2830355 . PMID 20096790. doi:10.1016/j.neuroimage.2010.01.046.
- ^ Langers DR, van Dijk P. Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cerebral Cortex. September 2012, 22 (9): 2024–38. PMC 3412441 . PMID 21980020. doi:10.1093/cercor/bhr282.
- ^ Striem-Amit E, Hertz U, Amedi A. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLOS ONE. March 2011, 6 (3): e17832. Bibcode:2011PLoSO...617832S. PMC 3063163 . PMID 21448274. doi:10.1371/journal.pone.0017832 .
- ^ Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X. Functional properties of human auditory cortical fields. Frontiers in Systems Neuroscience. 2010, 4: 155. PMC 3001989 . PMID 21160558. doi:10.3389/fnsys.2010.00155 .
- ^ Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas (PDF). Hearing Research. March 2008, 237 (1–2): 1–18. PMID 18255243. S2CID 15271578. doi:10.1016/j.heares.2007.12.003.
- ^ Guéguin M, Le Bouquin-Jeannès R, Faucon G, Chauvel P, Liégeois-Chauvel C. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing. Cerebral Cortex. February 2007, 17 (2): 304–13. PMC 2111045 . PMID 16514106. doi:10.1093/cercor/bhj148.
- ^ Poliva O, Bestelmeyer PE, Hall M, Bultitude JH, Koller K, Rafal RD. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus (PDF). Cognitive and Behavioral Neurology. September 2015, 28 (3): 160–80. PMID 26413744. S2CID 913296. doi:10.1097/wnn.0000000000000072.
- ^ Chang EF, Edwards E, Nagarajan SS, Fogelson N, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT. Cortical spatio-temporal dynamics underlying phonological target detection in humans. Journal of Cognitive Neuroscience. June 2011, 23 (6): 1437–46. PMC 3895406 . PMID 20465359. doi:10.1162/jocn.2010.21466.