赤眼蜂屬

維基百科,自由的百科全書

赤眼蜂屬
科學分類 編輯
界: 動物界 Animalia
門: 節肢動物門 Arthropoda
綱: 昆蟲綱 Insecta
目: 膜翅目 Hymenoptera
下目: 寄生蜂下目 Parasitica
總科: 小蜂總科 Chalcidoidea
科: 赤眼蜂科 Trichogrammatidae
屬: 赤眼蜂屬 Trichogramma

超過230種,詳見內文。

赤眼蜂屬(學名: Trichogramma)是膜翅目細腰亞目寄生蜂下目之下的小蜂總科赤眼蜂科的成員之一,其物種皆為多食性英語polyphagous的微小擬寄生物,寄生於其牠昆蟲的蟲卵中[1]。赤眼蜂屬是赤眼蜂科約80個屬的其中一個,在全世界包括超過200個物種[2][3][4]。成蟲大多小於1毫米,會產卵於宿主卵內,幼蟲取食卵黃、化蛹並引發宿主死亡。成蟲羽化後咬破寄主卵殼而出。

儘管現時在全世界有多種用於生物防治的物種,本屬物種仍然是研究得最詳盡的一類[5],有超過一千份相關的文獻與本屬物種相關,也是目前世上於生物防治中 最常用的物種[6]Trichogramma spp. are unique in approaching the size limit of how small an insect can be, which would be determined by how few neurons they can fit in their central nervous systems, yet exhibiting a complex behavior to sustain their lives. These wasps have less than 10,000 neurons, which is 1/100th that of the next smallest insect.[7]

寄生性

雌性成蟲會通過化學和視覺信號來找到用來作為宿主的卵,比如卵大小和顏色。[6]在她找到合適的卵後,其將會試圖通過她的產卵器和對卵殼的敲擊來判別這個卵是否之前已經被寄生過了。雌性赤眼蜂也會通過敲擊來判別目標被寄生卵的大小和質量以決定赤眼蜂在被寄生卵內的產卵數量。[8]一個雌性赤眼蜂一天最多可以在十個被寄生卵上產卵。

辨識

本屬物種體型細小,構造上亦單一,使物種間的分辨頗困難[9][10][11]。由於雌性相對來說體型較小,分類學家一般通過辨別雄性觸角和生殖器的方式來辨別不同物種。[12][13]

Charles V. Riley在1871年於北美第一種對赤眼蜂屬下的物種進行描述。他將從總督蝶卵中爬出來的小蜂稱為Trichogramma minutum[3]生物分類學中,首個採集的標本是十分重要的,因為其被用作繼續描述這個物種的基礎,但是它丟失了。Riley後來在1879年又描述了第二種叫做Trichogramma pretiosum的赤眼蜂,但是其樣本也丟了。為了更正這些錯誤,昆蟲學家返回了Riley原本找到這兩個物種的地方並收集了新的範本。現在這些範本被完好地存放在美國史密森尼學會。當前赤眼蜂屬的物種超過兩百種,但是在1960年的時候只有大概40種赤眼蜂被描述。[14]

赤眼蜂屬物種體內的沃爾巴克氏體

赤眼蜂屬物種體內有沃爾巴克氏體Wolbachia),是一種分佈廣泛的細菌,專門感染昆蟲的內臟,特別是生殖系統的器官[15]。這些沃爾巴克氏體在感染了昆蟲後,會改變其宿主交配時的成功率[15]。 Through a series of manipulations, Wolbachia-infected hosts transmit this intracellular bacterium to uninfected individuals.[15][16] These manipulations include male killing (increasing ratio of infected females that can reproduce), feminization (males become fertile females), 單性生殖, and cytoplasmic incompatibility英語cytoplasmic incompatibility.[16] Horizontal transfer of parthenogenesis-inducing Wolbachia, which has been observed in Trichogramma wasps, causes infected females to asexually produce fertile females and nonfunctional males.[17] The effects of this include potential speciation of Trichogramma, if Wolbachia is maintained long enough for genetic divergence to occur and for a new species of asexual wasps to become reproductively isolated.[17]

Transmission of the bacterium through horizontal transfer has been observed within the same species and among different species of Trichogramma, including T. kaykai, T. deion, T. pretiosum, and T. atopovirilia; however, limitations to transmission exist.[16] In vitro successful horizontal transfer is uncommon within Trichogramma, which suggests that the density of Wolbachia must be relatively high inside of the hosts' ovaries.[16] Cytoplasmic incompatibility of the host and bacterium can also be the source of this unsuccessful transfer in-vitro.[16] These limitations in vitro suggest that in nature, horizontal transfer by parthenogenesis-inducing Wolbachia may be a difficult and rare phenomenon. However, when looking at the Wolbachia-host associations, the Trichogramma-Wolbachia form a monophyletic group based on several Wolbachia-specific genes, which may be explained by horizontal transfer of Wolbachia between different species.[16] Therefore, although interspecific horizontal transfer of Wolbachia is limited in vitro, it is likely to occur quite frequently in nature and is not well understood yet.

The effects of Wolbachia in Trichogramma have several evolutionary implications. Commonly, uninfected wasps are unable to breed with infected wasps.[18] Many generations of reproductive isolation of these different groups may result in speciation.[18] In addition, some hosts can evolve with a dependency on Wolbachia for core reproductive functions, such as 卵子生成, so that eventually an infection is a requirement for successful reproduction.[18] Finally, Wolbachia can influence gender determination in its hosts so that more females are successfully born. This results in a reversal in 性選擇, where females must compete for male mates, which has evolutionary implications as it exposes different phenotypes to natural selection.[18]

Biological control

Trichogramma spp. have been used for control of lepidopteran pests for many years. They can be considered the Drosophila of the parasitoid world, as they have been used for inundative releases and much understanding today comes from experiments with these wasps.[19][20]

Entomologists in the early 1900s began to rear Trichogramma spp. for biological control. T. minutum is one of the most commonly found species in Europe and was first mass reared in 1926 on eggs of Sitotroga cerealella英語Sitotroga cerealella.[21] T. minutum has been investigated as a method of biological control of the Choristoneura fumiferana, a major pest of spruce and fir forests.[22]

Nine species of Trichogramma are produced commercially in insectaries around the world, with 30 countries releasing them. Trichogramma wasps are used for control on numerous crops and plants; these include cotton, sugarcane, vegetables, sugarbeets, orchards, and forests.[23] Some of the pests controlled include cotton bollworm (Helicoverpa armigera英語Helicoverpa armigera), codling moth (Cydia pomonella), lightbrown apple moth (Epiphyas postvittana英語Epiphyas postvittana), and European corn borer (Ostrinia nubilalis英語Ostrinia nubilalis).

Trichogramma species vary in their host specificity. This can lead to nontarget hosts being parasitized. This, in turn, can cause problems by reducing the amount of parasitism of the target host, and depending on the rate of parasitism, nontarget effects could be significant on nontarget host populations. Research is being done on the use of Trichogramma wasps to control populations of spruce bud moth (Zeiraphera canadensis英語Zeiraphera canadensis), which damages white spruce trees.[24]

Species used

The most commonly used species for biological control are T. atopovirilia, T. brevicapillum, T. deion, T. exiguum, T. fuentesi, T. minutum, T. nubilale, T. platneri, T. pretiosum, and T. thalense.[3]

T. pretiosum

T. pretiosum is the most widely distributed species in North America.[3] It is a more generalized parasitoid, able to parasitise a range of different species. It has been the focus of many research studies and has been successfully reared on 18 genera of Lepidoptera. T. pretiosum was introduced into Australia in the 1970s as part of the Ord River Irrigation Area IPM scheme.[25][26]

T. carverae

Trichogramma carverae is mainly used for light brown apple moth and codling moth control, and is predominately used in orchards.[27] In Australia, T. carverae is used for biological control of light brown apple moth in vineyards. Though Australia has its own native Trichogramma species, not much work has been undertaken to use them commercially for biological control within Australia.[28]

Light brown apple moth is common throughout Australia and is polyphagous on more than 80 native and introduced species. The larvae cause the most damage, especially to grape berries, as their feeding provides sites for bunch rot to occur.[29] Losses in the crops can amount up to $2000/ha in one season. It is very predominant in areas such as the 雅拉河谷. Insecticide use is not a choice method for most growers, who prefer a more natural means of controlling pests. As a result, Trichogramma wasps were considered a good candidate for biological control, even more so as the moth larvae are difficult to control with insecticide. Moreover, light brown apple moths are relatively vulnerable to egg parasitism, with their eggs being laid in masses of 20-50 on the upper surfaces of basal leaves in grapevines.

部分物種

以下譯名參照龐飛雄陳泰魯 (1974)使用的名稱[9]:441

參考文獻

  1. ^ Flanders, S; Quednau, W. Taxonomy of the genus Trichogramma (Hymenoptera, Chalcidoidea, Trichogrammatidae). BioControl. 1960, 5: 285–294. doi:10.1007/bf02372951. 
  2. ^ Consoli FL, Parra JRP, Zucchi RA (2010) 'Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma.' (Springer).
  3. ^ 3.0 3.1 3.2 3.3 Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of Bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  4. ^ Sumer, F; Tuncbilek, AS; Oztemiz, S; Pintureau, B; Rugman-Jones, P; Stouthamer, R. A molecular key to the common species of Trichogramma of the Mediterranean region. BioControl. 2009, 54: 617–624. doi:10.1007/s10526-009-9219-8. 
  5. ^ Upadhyay RK, Mukerji KG, Chamola BP (2001) 'Biocontrol potential and its Exploitation in Sustainable Agriculture: Insect Pests.' (Kluwer Academic/ Plenum Publishers).
  6. ^ 6.0 6.1 Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  7. ^ Macadamia Nut Plantation, Trichogramma. [2018-06-18]. (原始內容存檔於2017-08-15). 
  8. ^ Klomp, H; Teerink, B.J.; Wei, Chun Ma. Discrimination Between Parasitized and Unparasitized Hosts in the Egg Parasite Trichogramma embryophagum (Hym.=Trichogrammatidae)=a Matter of Learning and Forgetting. Netherlands Journal of Zoology (Koninklijke Brill NV). 1979, 30 (2): 254–27 [May 22, 2014]. ISSN 0028-2960. doi:10.1163/002829679X00412. (原始內容存檔於2014-11-02). 
  9. ^ 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 龐飛雄; 陳泰魯. 中国的赤眼蜂属Trichogramma記述. 昆蟲學報. 1974-11, 17 (4): 441–454 [2018-06-18]. (原始內容存檔於2018-06-19) (中文(簡體)). 
  10. ^ Nagarkatti, S; Nagaraja, H. Biosystematics of Trichogramma and Trichogrammatoidea species. Annual Review of Entomology. 1977, 22: 157–176. doi:10.1146/annurev.en.22.010177.001105. 
  11. ^ Thomson, LJ; Rundle, BJ; Carew, ME; Hoffmann, AA. Identification and characterization of Trichogramma species from south-eastern Australia using the internal transcribed spacer 2 (ITS-2) region of the ribosomal gene complex. Entomologia Experimentalis et Applicata. 2003, 106: 235–240. doi:10.1046/j.1570-7458.2003.00029.x. 
  12. ^ Nagarkatti, S; Nagaraja, H. Redescriptions of some known species of Trichogramma (Hym., Trichogrammatidae), showing the importance of the male genitalia as a diagnostic character. Bulletin of Entomological Research. 1971, 61: 13–31. doi:10.1017/s0007485300057412. 
  13. ^ Polaszek, A; Rugman-Jones, P; Stouthamer, R; Hernandez-Suarez, E; Cabello, T; Pino Pérez, M. Molecular and morphological diagnoses of five species of Trichogramma: biological control agents of Chrysodeixis chalcites (Lepidoptera: Noctuidae) and Tuta absoluta (Lepidoptera: Gelechiidae) in the Canary Islands. BioControl. 2012, 57: 21–35. doi:10.1007/s10526-011-9361-y. 
  14. ^ 存档副本. [2018-06-18]. (原始內容存檔於2015-09-16). 
  15. ^ 15.0 15.1 15.2 Grenier, Simon; et al. Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps. Proceedings of the Royal Society of London B: Biological Sciences. 1998, 265: 1441–1445. PMC 1689218可免費查閱. doi:10.1098/rspb.1998.0455. 
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 Huigens, M. E.; et al. Natural interspecific and intraspecific horizontal transfer of parthenogenesis–inducing wolbachia in trichogramma wasps. Proceedings of the Royal Society of London B: Biological Sciences. 2004, 271: 509–515. PMC 1691627可免費查閱. doi:10.1098/rspb.2003.2640. 
  17. ^ 17.0 17.1 Bourtzis, Kostas; O'Neill, Scott. Wolbachia Infections and Arthropod Reproduction. BioScience. 1998, 48: 287–293. doi:10.2307/1313355. 
  18. ^ 18.0 18.1 18.2 18.3 Charlat, Sylvain; Hurst, Gregory D. D.; Merçot, Hervé. Evolutionary consequences of Wolbachia infections. Trends in Genetics. 2003-04-01, 19 (4): 217–223. ISSN 0168-9525. PMID 12683975. doi:10.1016/S0168-9525(03)00024-6. 
  19. ^ Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. In 'Annual Review of Entomology' pp. 375-406.
  20. ^ BURGIO G., MAINI S., 1995.- Control of European corn borer in sweet corn by Trichogramma brassicae Bezd. (Hym., Trichogrammatidae).- Journal of Applied Entomology, 119 (1): 83-87.
  21. ^ Flanders, SE. Mass Production of Egg Parasites of the Genus Trichogramma. Hilgardia. 1930, 4: 465–501. doi:10.3733/hilg.v04n16p465. 
  22. ^ Smith, S.M.; Hubbes, M.; Carrow, J.R. 1986. Factors affecting inundative releases of Trichogramma minutum Ril. against the spruce budworm頁面存檔備份,存於互聯網檔案館). J. Appl. Entomol. 101(1):29–39.
  23. ^ Hassan, SA. The mass rearing and utilization of Trichogramma to control lepidopterous pests: Achievements and outlook. Pesticide Science. 1993, 37: 387–391. doi:10.1002/ps.2780370412. 
  24. ^ Turgeon, Jean J. "Status of research on the development of management tactics and strategies for the spruce bud moth in white spruce plantations". The Forestry Chronicle. 68 (5): 614–622. DOI:10.5558/tfc68614-5.
  25. ^ Davies, AP; Zalucki, MP. Collection of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from tropical northern Australia: a survey of egg parasitoids for potential pest insect biological control in regions of proposed agricultural expansion. Australian Journal of Entomology. 2008, 47: 160–167. doi:10.1111/j.1440-6055.2008.00644.x. 
  26. ^ Davies, AP; Pufke, US; Zalucki, MP. Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape. Agricultural and Forest Entomology. 2011, 13: 247–258. doi:10.1111/j.1461-9563.2010.00512.x. 
  27. ^ Llewellyn R (2002) The good bug book: beneficial organisms commercially available in Australia and New Zealand for biological pest control.' (Integrated Pest Management Pty Ltd).
  28. ^ Glenn, DC; Hercus, MJ; Hoffmann, AA. Characterizing Trichogramma (Hymenoptera: Trichogrammatidae) species for biocontrol of light brown apple moth (Lepidoptera: Tortricidae) in grapevines in Australia. Annals of the Entomological Society of America. 1997, 90: 128–137. 
  29. ^ Glenn, DC; Hoffmann, AA. Developing a commercially viable system for biological control of light brown apple moth (Lepidoptera: Tortricidae) in grapes using endemic Trichogramma (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology. 1997, 90: 370–382. 
  30. ^ 引用錯誤:沒有為名為Pang & Chen, 1974的參考文獻提供內容
  31. ^ Description of three new Trichogramma (Hymenoptera, Trichogrammatidae) from New Zealand and their relationship to new world species. [2018-06-20]. (原始內容存檔於2018-06-20) (英語). 
引用錯誤:在<references>標籤中name屬性為「Quednau 1960」的參考文獻沒有在文中使用

外部連結