跳至內容

磁滯現象

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
Stoner–Wohlfarth模型下磁感應強度 m磁場強度 h關係. 從原點出發的曲線稱為 起始磁化曲線. 磁化飽和後的下行曲線與下方對應的反向曲線構成一個磁滯回線. 其中hc值被稱為矯頑力mrs值被稱為剩磁

磁滯現象是指鐵磁性材料(例如:)在磁化和去磁過程中,鐵磁質的磁化強度不僅依賴於外磁場強度,還依賴於原先磁化強度的現象。 當外加磁場施加於鐵磁質時,其原子的偶極子按照外加場自行排列。即使當外加場被撤離,部分排列仍保持:此時,該材料被磁化。 一旦被磁化了,其磁性會繼續保留。要消磁的話,只要施加相反方向的磁場就可以了。這亦是硬碟的記憶運作原理。

對於產生晶粒取向的電工鋼的一組B-H迴路(BR 表示剩磁,而HC矯頑力。)

在鐵磁質中,磁場強度H)和磁感應強度B)之間的關係是非線性的。如果在增強場強條件下,此二者關係將呈曲線上升到某點,到達此點後,即使場強H繼續增加,磁感應強度B也不再增加。該情況被稱為磁飽和(magnetic saturation)。[1]

如果此時磁場線性降低,該線性關係將以另一條曲線返回到0場強的某點,該點的B將被初始曲線的磁感應強度量BR叫做剩磁感應強度剩磁(remnant flux density)[2] 相抵消。

如果繪製以外加磁場的全部強度的二者關係圖,將為S形的迴路。S的中間厚度描述了磁滯量,該量與材料的矯頑力[3] 相關。

該現象的實際影響可為,例如,當通過磁芯的外加電流被撤離,由於殘留磁場繼續吸引電樞,而引起滯後從而延遲磁能的釋放。

磁滯迴路: 磁化向量 (M),以磁場強度(H)為函數

對於一種特殊材料,該曲線會影響一個磁路的設計。

為了最小化該影響和減小相關的能量損失,從而採用具有低矯頑力和低遲滯損失的鐵磁性物質,例如坡莫合金鐵鎳合金透磁合金[4]

在很多應用中,由迴路中不同點驅動產生的小的遲滯迴路存在於B-H層中。接近原點的各迴路有一個較大的µ(磁導率)[5]。迴路越小,其磁性形狀越柔和。一個特例就是,用一個降低的交流電場去磁化任何材料。

物理起源

磁滯現象模型

應用

鐵磁體中的磁滯現象可作各種不同的應用。磁帶硬碟信用卡都利用了鐵磁體中的磁滯現象來作數據的儲存。在這些材料中,很顯然一個磁極代表一個比特(bit),如北極代表1而南極代表0。然而,更換該存儲器從一個到另一個,此遲滯作用要求了解已存資訊,因為所需的場強在每種情況下都會不同。為了解決該問題,記錄系統首先使用帶偏移程序過速驅動整個系統到一個已知狀態。模擬電磁記錄同樣適用這種技術。不同材料要求不同的偏移量,這就是為什麼在大多數卡式錄音帶前端都有一個選擇裝置(寫保護)。

參考書目

  1. ^ Arthur Eugene Fitzgerald, Charles Kingsley, Stephen D. Umans. Electric machinery. McGraw-Hill Professional. 2002: 230. ISBN 0824742699. 
  2. ^ Joao Bastos, Nelson Sadowski. Electromagnetic modeling by finite element methods. CRC Press. 2003: 91. ISBN 0073660094. 
  3. ^ Masud Mansuripur. The Physical Principles of Magneto-Optical Recording. Cambridge University Press. 1998: 586. ISBN 0521634180. 
  4. ^ 田民波. 磁性材料. 清華大學出版社. 2001: 68. ISBN 7302040842. 
  5. ^ Joao Bastos, Nelson Sadowski. Electromagnetic modeling by finite element methods. CRC Press. 2003: 31. ISBN 0073660094. 
  • Isaak D. Mayergoyz, Mathematical Models of Hysteresis and their Applications: Second Edition (Electromagnetism), Academic Press, 2003.

參看

外部連結