光合自营组织培养技术

维基百科,自由的百科全书

光合自营组织培养技术(英语:photoautotrophic tissue culture),又称为植物无糖组织培养技术,是一种突破性的植物组织培养技术,主要概念是去除植物培养基中的糖分,使植物仅倚赖光合作用自营生长[1],不仅能降低植物组织培养过程中的污染风险,也能使植株更加健壮,进而增加驯化的成功率,更能减少植物组织培养过程中所需耗费的成本与人力资源,是未来组织培养发展的重点方向。[2]:184[3]

发展历程

1987年,在植物组织培养环境的研究中发现,将植株从黑暗处移至光亮处时,其组织培养容器内的二氧化碳量会迅速降低。[4]使得人们开始意识到在组织培养容器中的植物其实具有光合作用的能力,开启对于组织培养植株光合自营的讨论。1988年,马铃薯[5]草莓[6]康乃馨[7]以及烟草[8]等多种植物的无糖培养基配方与栽培成效开始陆续被报导。在此之后,光合自营组织培养就成为植物组织培养研究的新趋势,直至2005年,接近50种的植物的无糖培养方法被开发出来。[9][10]:150-151

特点

因为光合自营组织培养植株以自营方式生长,故较传统以糖类为碳源的植株有更好的生长势、植株更为健壮,因此也具有较高的驯化成功率、抗病害及生理障碍的能力。除此之外,由于染菌率较低,因此可用较大容量的栽培容器进行培养,增加每单位面积的生产量,并简化整个组织培养的生产过程,以减少生产的成本。然而,由于二氧化碳成为此系统中唯一的碳源,因此在光度与二氧化碳浓度的调节上较为复杂,在系统的架设上有较高的难度。且由于光合自营组织培养技术主要是依赖植株之光合作用以产生能量,因此无法进行愈伤组织诱导、芽体培养及花药培养等本身不会生长出叶片的组织培养技术。[9][10]:152

近年发展与现况

目前,已经有数种植物使用光和自营组织培养系统进行商业生产,包含贯叶连翘[11][12]细茎石斛[13]罗汉果[14]猕猴桃[15][10]:154

同时,大规模光合自营组织培养系统也如火如荼的开发中[16],期盼能让组织培养容器从直径数公分的瓶子,扩大到数平方公尺大的空间。[10]:155 [17]

参考文献

  1. ^ Xiao, Yulan; Niu, Genhua; Kozai, Toyoki. Development and application of photoautotrophic micropropagation plant system. Plant Cell, Tissue and Organ Culture. 2010-10-23, 105 (2): 149–158. ISSN 0167-6857. S2CID 24101347. doi:10.1007/s11240-010-9863-9 (英语). 
  2. ^ 熊丽; 吴丽芳. 觀賞花卉的組織培養與大規模生產. 北京: 化学工业出版社. 2003. ISBN 7-5025-4162-4 (中文(中国大陆)). 
  3. ^ Kozai T. Photoautotrophic micropropagation. In Vitro Cellular & Developmental Biology. 1991-04, 27: 47-51 (英语). 
  4. ^ Fujiwara K.; Kozai T.; Watanabe I. Measurements of carbon dioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets. Journal of Agricultural Meteorology. 1987, 43: 21-30 (英语). 
  5. ^ Kozai T.; Koyama Y.; Watanabe I. Multiplication and rooting of potato plantlets in vitro with sugar medium under high photosynthetic photon flux. Acta Horticulturae. 1988, 230: 121-127 (英语). 
  6. ^ Kozai T.; Sekimoto K. Effects of number of air exchanges per hour of the closed vessel and the photosynthetic photon flux on the carbon dioxide concentration inside the vessel and growth of strawberry plantlets in vitro. Environmental Control in Biology. 1988, 26: 21-29 (日语). 
  7. ^ Kozai T.; Iwanami Y. Effects of CO2 enrichment and sucrose concentration under high photon fluxes on plantlet growth of Carnation (Dianthus caryophyllus L.,) in tissue culture during the preparation stage. Journal of the Japanese Society for Horticultural Science. 1988, 57: 279-288 (英语). 
  8. ^ Pospisilova J.; Solarova J.; Catsky J.; Ondrej M.; Opatrny Z. The photosynthetic characteristics during the micropropagation of tobacco and potato plants. Photosynthetica. 1988, 22: 205-213 (英语). 
  9. ^ 9.0 9.1 Kozai T.; Afreen F,.; Zobayed SMA. Photoautotrophic (sugarfree medium) micropropagation as a new propagation and transplant production system. Dordrecht: Springer. 2005: 315 (英语). 
  10. ^ 10.0 10.1 10.2 10.3 Yulan Xiao; Genhua Niu; Toyoki Kozai. Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult. 2011, 105 (英语). 
  11. ^ Couceiro MA.; Afreen F.; Zobayed SMA.; Kozai T . Enhancedgrowth and quality of St. John’s wort (Hypericum perforatum L.)under photoautotrophic in vitro conditions. In Vitro Cellular and Developmental Biology. 2006, 42: 278-282 (英语). 
  12. ^ Mosaleeyanon K.; Zobayed SMA.; Afreen F.; Kozai T. Relationships between net photosynthetic rate and secondary metabolite contents in St. Jon’s wort. Plant Science. 2005, 169: 523-537 (英语). 
  13. ^ Xiao Y.; Zhang Y.; Dang K.; Wang D. Growth and photosynthesis of Dendrobium candidum plantlets cultured photoautotrophically. Propagat Ornamental Plants. 2007, 7: 89-96 (英语). 
  14. ^ Zhang M.; Zhao D.; Ma Z.; Li X.; Xiao Y. Growth and photosynthethetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. Horticultural Science. 2009, 44: 757-763 (英语). 
  15. ^ Arigita L.; Gonza´lez A.; Sa´nchez Tame´s R. Influence of CO2 and sucrose on photosynthesis and transpiration of Actidinia deliciosa explants cultured in vitro. Physiol Plant. 2007, 115: 166-173 (英语). 
  16. ^ Kozai T.; Kubota C.; Heo J.; Chun C.; Ohyama K.; Niu G.; Mikami H. Towards efficient vegetative propagation and transplant production of sweetpotato (Ipomoea batatas (L.) Lam.) under artificial light in closed systems. Proceedings of international workshop on sweetpotato production system toward 21st Century. Miyazaki, Japan: 201-214. 1998 (英语). 
  17. ^ Nishimura M.; Kozai T.; Kubota C.; Chun C. Analysis of electric energy consumption and its cost for a closed-type transplant production system. Indonesian Journal of Electrical Engineering and Computer Science. 2001, 13: 204-209 (英语).