跳转到内容

肼配合物

本页使用了标题或全文手工转换
维基百科,自由的百科全书

肼配合物又称联氨配合物,是指金属和(N2H4)形成的配位化合物。肼配合物可用作制备一些无机材料的前驱体,或者直接作为含能材料[1]

肼作为桥联的双齿配体(图中蓝色的N-N为N2H4

制备

肼配合物可以通过金属盐和肼在水溶液中直接反应得到:[1]

M(NO3)2~3 + 3 N2H4 → [M(N2H4)3](NO3)2~3 (M=Co, Ni, Zn, Cd, Cr)

在反应中,原先配合物中配位能力比肼弱的配体可能会被取代,例如:[2]

M(CO)2(PPh3)2X(OSO2CF3) + N2H4 → [M(CO)2(PPh3)2(N2H4)X](OSO2CF3) (M=Ru, X=Cl 或 M=Os, X=Br)

其它制备方法还包括金属和含有的铵盐溶液反应、金属直接与𨥙鹽反应等。[3]

性质

肼在配合物中可以以单齿配体、双齿配体或者桥联配体与金属连接。[2]肼配合物的其它一些性质参见下表。

肼配合物性质汇总
化学式 名称 结构性质 理化性质 参考文献
Mg(N3)2(N2H4)2 叠氮化二肼合镁 IR (cm−1): N3 1310 (sym.), 2080 (asym.) 125 °C开始第一阶段分解,得到Mg(N2)(NH2)2,217 °C开始第二阶段分解,得到MgNH Patil
Ba(N2H3COO)2(N2H4)2 二肼合肼基甲酸钡 单斜晶系,空间群C2,d (Å) N-N: 1.43, 1.41 Patil
[Cr(N2H4)3](NO3)3 硝酸三肼合铬(III) IR (KBr, cm−1): NH2 1628, 3234; NO3 1362 FS 64, IS >25, SES 1.167 Wojewódka
[Cr(N2H4)3](ClO4)3 高氯酸三肼合铬(III) IR (KBr, cm−1): NH2 1628, 3245; ClO4 1092 FS 96, IS 2, SES 1.750 Wojewódka
Mn(N2H4)2Cl2 氯化二肼合锰(II) 单斜晶系,空间群C2/m,d (Å) N-N: 1.459 Patil
Mn(NCS)2(N2H4)2 二肼合异硫氰酸锰(II) 磁矩 5.87 BM(23 °C) 白色固体,加热分解为Mn(NCS)2,并放出NH3和N2 Patil
Mn(CH3COO)2(N2H4)2 二肼合乙酸锰(II) IR (cm−1): COO 1420(sym.), 1610(asym.) 130 °C开始分解,经Mn(CH3COO)2·1/2N2H4和Mn(CH3COO)2,最终得到MnO2 [4]
Fe(NCS)2(N2H4)2 二肼合异硫氰酸铁(II) 磁矩 4.91 BM(23 °C) 白色固体,加热分解为Fe(NCS)(CN) Patil
[Co(N2H4)3](NO3)2 硝酸三肼合钴(II) IR (KBr, cm−1): NH2 1624, 3265; NO3 1381 FS 60, IS >25, SES 2.250 Wojewódka
[Co(N2H4)3](ClO4)2 高氯酸三肼合钴(II) IR (KBr, cm−1): NH2 1628, 3241; ClO4 1142 FS 36, IS >25, SES 0.840 Wojewódka
Co(NCS)2(N2H4)2 二肼合异硫氰酸钴(II) 磁矩 4.80 BM(23 °C) 粉色固体,加热分解为Co(NCS)(CN) Patil
Co(C3H2O4)(N2H4)2 二肼合丙二酸钴(II) 结构中N2H4为桥联配体 玫瑰红色固体 Sivasankar
Co(C4H4O4)(N2H4)2 二肼合丁二酸钴(II) 结构中N2H4为桥联配体 玫瑰红色固体 Sivasankar
Co3(C6H5O7)2·6N2H4 六肼合柠檬酸钴 磁矩4.90 BM 粉色固体,热分解产物Co3O4 Yasodhai
[Ni(N2H4)3](NO3)2 硝酸三肼合镍 IR (KBr, cm−1): NH2 1628, 3241; NO3 1385 FS 24, IS 10, SES 0.027
对水稳定;可以和10%氢氧化钠溶液温和地反应;遇浓硫酸起火
Wojewódka
[5]
NiSO4·3N2H4 三肼合硫酸镍 分解为硫酸盐的反应热:452 cal/g 265 °C分解为NiSO4 [6]
Ni(NCS)2(N2H4)2 二肼合异硫氰酸镍 磁矩 2.82 BM(23 °C) 蓝色固体,加热分解为Ni(NCS)(CN) Patil
Ni(C3H2O4)(N2H4)2 二肼合丙二酸镍 结构中N2H4为桥联配体 浅紫色固体 Sivasankar
Ni(C4H4O4)(N2H4)2 二肼合丁二酸镍 结构中N2H4为桥联配体 浅紫色固体 Sivasankar
Ni3(C6H5O7)2·6N2H4 六肼合柠檬酸镍 磁矩3.20 BM 蓝紫色固体,热分解产物NiO Yasodhai
[Cu(N2H4)]Cl 氯化一肼合铜(I) 结构中N2H4为桥联配体;分子有反磁性 白色固体,在空气中迅速氧化为二价铜 [7]
{Cu(μ2-CN)(μ2-N2H4)}n 氰化一肼合铜(I) 正交晶系,空间群Pbcm
d (Å) Cu-N 2.17(1), N-N 1.48(2), Cu-N-N (°) 114.2(7)
[8]
CuC2O4·2N2H4 二肼合草酸铜(II) IR (cm−1): COO 1370 (sym.), 1660 (asym.) 不稳定。在空气中失去一分子N2H4,变为稳定的CuC2O4·N2H4。152 °C分解为CuC2O4 Patil
Cu2C6H4O7·N2H4·2H2O 二水·一肼合柠檬酸二铜(II) 磁矩1.80 BM 深蓝色固体,热分解产物CuO Yasodhai
[Zn(N2H4)3](NO3)2 硝酸三肼合锌 IR (KBr, cm−1): NH2 1624, 3261; NO3 1381 FS >360, IS >25, SES 0.720 Wojewódka
[Zn(N2H4)3](ClO4)2 高氯酸三肼合锌 IR (KBr, cm−1): NH2 1609, 3241; ClO4 1084 FS 192, IS >25, SES 9.000 Wojewódka
Zn(C3H2O4)(N2H4)2 二肼合丙二酸锌 结构中N2H4为桥联配体 无色固体 Sivasankar
Zn(C4H4O4)(N2H4)2 二肼合丁二酸锌 结构中N2H4为桥联配体 无色固体 Sivasankar
Zn3(C6H5O7)2·6N2H4 六肼合柠檬酸锌 反磁性 无色固体,热分解产物ZnO Yasodhai
[Cd(N2H4)3](NO3)2 硝酸三肼合镉 IR (KBr, cm−1): NH2 1597, 3265; NO3 1354 FS 216, IS >25, SES 0.080 Wojewódka
[Cd(N2H4)3](ClO4)2 高氯酸三肼合镉 IR (KBr, cm−1): NH2 1605, 3245; ClO4 1084 FS 2, IS 6, SES 0.010 Wojewódka
Cd(C3H2O4)(N2H4)2 二肼合丙二酸镉 结构中N2H4为桥联配体 无色固体 Sivasankar
Cd(C4H4O4)(N2H4)2 二肼合丁二酸镉 结构中N2H4为桥联配体 无色固体 Sivasankar
Cd3(C6H5O7)2·6N2H4 六肼合柠檬酸镉 反磁性 无色固体,热分解产物CdO Yasodhai
Ce(SO4)2·2N2H4 二肼合硫酸铈(IV) 分解为硫酸盐的反应热:65 cal/g 275 °C分解为Ce(SO4)2 Athavale
UO2SO4·2N2H4 二肼合硫酸铀酰 分解为硫酸盐的反应热:173 cal/g 185 °C分解为UO2SO4 Athavale
Th(SO4)2·2N2H4 二肼合硫酸钍 分解为硫酸盐的反应热:75 cal/g 265 °C分解为Th(SO4)2 Athavale

注:参考文献中人名对应的文献是:Wojewódka[1]、Athavale[6]、Sivasankar[9]、Yasodhai[10]、Patil[11]。表中使用的缩写:IR 红外;FS 摩擦感度(N),IS 撞击感度(Nm),SES 静电感度(J);d 键长。

应用

肼配合物可以用于制备一些无机材料,如氧化物[3]金属[12]等。还有一些肼配合物可以直接用作含能材料。[5]一些肼配合物也可用作火箭燃

安全

合成肼配合物时可能用到高毒的肼,应当注意防护。[13]肼的一些配合物是易爆危险品,应当按照规范操作。[14]

参考文献

  1. ^ 1.0 1.1 1.2 Wojewódka A, Bełzowski J. Hydrazine Complexes of Transition Metals as Prospective Explosives. Chemik, 2011, 65(1): 24-27.
  2. ^ 2.0 2.1 Heaton, Brian T.; Jacob, Chacko; Page, Philip. Transition metal complexes containing hydrazine and substituted hydrazines. Coordination Chemistry Reviews. 1996, 154: 193–229. ISSN 0010-8545. doi:10.1016/0010-8545(96)01285-4. 
  3. ^ 3.0 3.1 Patil, K C. Metal-hydrazine complexes as precursors to oxide materials. Journal of Chemical Sciences. 1986, 96 (6): 459–464. ISSN 0253-4134. doi:10.1007/BF02936298. 
  4. ^ Mahesh, G.V.; Patil, K.C. Thermal reactivity of metal acetate hydrazinates. Thermochimica Acta. 1986, 99: 153–158. ISSN 0040-6031. doi:10.1016/0040-6031(86)85277-7. 
  5. ^ 5.0 5.1 Shunguan, Zhu; Youchen, Wu; Wenyi, Zhang; Jingyan, Mu. Evaluation of a New Primary Explosive: Nickel Hydrazine Nitrate (NHN) complex. Propellants, Explosives, Pyrotechnics. 1997, 22 (6): 317–320. ISSN 0721-3115. doi:10.1002/prep.19970220604. 
  6. ^ 6.0 6.1 Athavale, V.T.; Padmanabha Iyer, C.S. Studies on some metal-hydrazine complexes. Journal of Inorganic and Nuclear Chemistry. 1967, 29 (4): 1003–1012. ISSN 0022-1902. doi:10.1016/0022-1902(67)80085-X. 
  7. ^ Brown, David B.; Donner, Jeffrey A.; Hall, James W.; Wilson, Scott R.; Wilson, Roxy B.; Hodgson, Derek J.; Hatfield, William E. Interaction of hydrazine with copper(II) chloride in acidic solutions. Formation, spectral and magnetic properties, and structures of copper(II), copper(I), and mixed-valence species. Inorganic Chemistry. 2002, 18 (10): 2635–2641. ISSN 0020-1669. doi:10.1021/ic50200a001. 
  8. ^ Cromer, D. T.; Larson, A. C.; Roof, R. B. The crystal structure of copper(I) cyanide hydrazine complex, CuCN.N2H4. Acta Crystallographica. 1966, 20 (2): 279–282. ISSN 0365-110X. doi:10.1107/S0365110X66000537. 
  9. ^ Sivasankar, B. N.; Govindarajan, S. Studies on bis(Hydrazine) Metal Malonates and Succinates. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 1994, 24 (9): 1573–1582. ISSN 0094-5714. doi:10.1080/00945719408002581. 
  10. ^ Yasodhai, S.; Sivakumar, T.; Govindarajan, S. Preparation, characterisation and thermal reactivity of transition metal complexes of hydrazine with citric acid. Thermochimica Acta. 1999, 338 (1-2): 57–65. ISSN 0040-6031. doi:10.1016/S0040-6031(99)00192-6. 
  11. ^ K. C. Patil. Inorganic Hydrazine Derivatives - Synthesis, Properties and Applications. Wiley, 2014. ISBN 9781118715130
  12. ^ Park, Jung Woo; Chae, Eun H.; Kim, Sang H.; Lee, Jong Ho; Kim, Jeong Wook; Yoon, Seon Mi; Choi, Jae-Young. Preparation of fine Ni powders from nickel hydrazine complex. Materials Chemistry and Physics. 2006, 97 (2-3): 371–378. ISSN 0254-0584. doi:10.1016/j.matchemphys.2005.08.028. 
  13. ^ Occupational Safety and Health Guideline for Hydrazine—Potential Human Carcinogen (PDF). NIOSH. 1988 [23 Nov 2018]. (原始内容 (PDF)存档于2021-03-22). 
  14. ^ Talawar, M B; Agrawal, A P; Chhabra, J S; Ghatak, C K; Asthana, S N; Rao, K U B. Studies on nickel hydrazinium nitrate (NHN) and bis-(5-nitro-2H tetrazolato-N2)tetraamino cobalt(III) perchlorate (BNCP): Potential lead-free advanced primary explosives页面存档备份,存于互联网档案馆). CSIR, 2004. 677-681. ISSN: 0975-1084.

拓展阅读

  1. Bottomley, F. The reactions of hydrazine with transition-metal complexes. Quarterly Reviews, Chemical Society. 1970, 24 (4): 617. ISSN 0009-2681. doi:10.1039/qr9702400617. 
  2. Sacconi, L.; Sabatini, A. The infra-red spectra of metal(II)-hydrazine complexes. Journal of Inorganic and Nuclear Chemistry. 1963, 25 (11): 1389–1393. ISSN 0022-1902. doi:10.1016/0022-1902(63)80408-X. 
  3. Dilworth, J.R. The coordination chemistry of substituted hydrazines. Coordination Chemistry Reviews. 1976, 21 (1): 29–62. ISSN 0010-8545. doi:10.1016/S0010-8545(00)82050-0.