巴苏定理

本页使用了标题或全文手工转换
维基百科,自由的百科全书

统计学中,巴苏定理(Basu's Theorem)指出任何有界完全充分统计量与任何辅助统计量独立。 这是Debabrata Basu于1955年发现的结论。[1]

定理陈述

是可测空间上的一族分布。如果的充分且有界完全的统计量,是关于的辅助统计量,那么独立于

证明

对任意博雷尔集,构造函数。注意到记号是合理的,因为这一函数不取决于。第一项不取决于是因为的充分性,第二项不取决于是因为是关于的辅助统计量。注意到有界并且期望为0。因此,的有界完全性保证了几乎处处为0。由于可以是任意博雷尔集,定理得证。

例子

正态分布(方差已知)的样本期望值独立于样本方差

X1, X2,..., Xn 是独立同分布的正态分布随机变量,其中方差已知,均值未知。

关于参数可以证明样本均值

是充分完全统计量,并且样本方差

是辅助统计量,即其分布并不依赖于

因此,巴苏定理指出二者独立。

尽管上述证明是借助方差已知均值未知的正态分布模型完成的,这一结论并不只在该情况下成立。实际上,无论方差或均值已知与否,正态分布的样本均值和样本方差都是独立的。更进一步,正态分布是唯一具有这一性质的分布[2]

参考文献

  1. ^ Basu, D. On Statistics Independent of a Complete Sufficient Statistic. Sankhyā. 1955, 15 (4): 377–380. JSTOR 25048259. MR 0074745. Zbl 0068.13401. 
  2. ^ Geary, R.C. The Distribution of the "Student's" Ratio for the Non-Normal Samples. Supplement to the Journal of the Royal Statistical Society. 1936, 3 (2): 178–184. JFM 63.1090.03. JSTOR 2983669. doi:10.2307/2983669.