富氣隕石

维基百科,自由的百科全书

富氣隕石是指含有大量惰性氣體,例如,有時還有其它元素的隕石[1]。儘管這些氣體實際上幾乎存在所有的隕石中[2],費耶特維爾隕石有〜2,000,000 x10−8 ccSTP/公克[3],或〜2%體積當量的氦。相較背景水準是只有幾個PPM

富氣隕石的鑑定是依據所存在輕稀有氣體的量,如果不在所有隕石中存在的已知稀有氣體組成分組的基礎上再增加一個分組,就無法解釋其含量[3]

歷史

威廉·拉姆齊在1895年在地質樣本採樣後不久,在釔鈾礦中第一次發現地球上的氦,而不是通過觀測太陽[4]

鮑爾在1947年提出測定隕石年代的方法[5],並由格林(Gerling)和帕夫洛娃(Pavlova)於1951年在出版品上明確的陳述[6]。然而,這很快導致隕石年齡的巨大變化:人們意識到過量的氦(包括氦-3、稀土)也是由輻射產生的[7]

第一個確認的富氣隕石是由格林和列夫斯基(Levskii)於1956年發表在出版品上的斯塔羅佩西亞諾(Staroe Pesyanoe,通常簡稱為Pesyanoe)。與後來的費耶特維爾家族一樣,佩西亞諾的氦含量約為100萬x10−8 ccSTP/g[8]

雷諾茲(Reynolds)發表的"一般氙(Xe)的異常"[9],包括Xe129等衰變的產物,開創了異種學英语xenology的子領域[10][11][12][13],一直到今天[14][15]

在1980年代首次發表了太陽前顆粒(Presolar grains,PSGs)[16],這是尋找惰性氣體導出的[17];但PSGs並不是單純地通過氣體含量來檢測[18][19]

調查範圍

相關條目

參考資料

  1. ^ Suess, H. E.; Wänke, H.; Wlotzka, F. On the origin of gas-rich meteorites. Geochimica et Cosmochimica Acta (ScienceDirect). 1964-05-01, 28 (5): 595–607. Bibcode:1964GeCoA..28..595S. doi:10.1016/0016-7037(64)90080-8. 
  2. ^ Swindle, T. Trapped noble gases in meteorites. Tucson: University of Arizona Press. 1988: 535.  in Meteorites and the early solar system, J. F. Kerridge & M. S. Matthews Eds.
  3. ^ 3.0 3.1 Goswami, J.; Lal, D.; Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system. Space Science Reviews. 1983, 37 (1–2): 111–59. Bibcode:1984SSRv...37..111G. S2CID 121335431. doi:10.1007/BF00213959. 
  4. ^ Ramsay, W. Argon and Helium in Meteoritic Iron. Nature. 4 Jul 1895, 52 (1340): 224–25. Bibcode:1895Natur..52..224R. doi:10.1038/052224a0可免费查阅. 
  5. ^ Bauer, C. Production of Helium in Meteorites by Cosmic Radiation. Physical Review. 15 August 1947, 72 (4): 354. Bibcode:1947PhRv...72..354B. doi:10.1103/PhysRev.72.354. 
  6. ^ Gerling, E.; Pavlova, T. Determination of the geological age of two stony meteorites by the argon method. Doklady Akademii Nauk SSSR. 1951, 77: 85–97. 
  7. ^ Paneth, F.; Reasbeck, P.; Mayne, K. Production by cosmic rays of helium-3 in meteorites. Nature. Aug 1953, 172 (4370): 200–01. Bibcode:1953Natur.172..200P. PMID 13087152. S2CID 4149773. doi:10.1038/172200a0. 
  8. ^ Gerling, E.; Levskii, L. On the origin of the rare gases in stony meteorites. Doklady Akademii Nauk SSR. 1956, 110: 750. 
  9. ^ Reynolds, J. Xenology. Journal of Geophysical Research. 15 May 1963, 68 (10): 2939–56. Bibcode:1963JGR....68.2939R. doi:10.1029/JZ068i010p02939. 
  10. ^ Fleischer, R.; Price, P.; Walker, R. 6.5 Study of Nucleosynthesis and the Early History of the Solar System by Extinct Isotopes. Nuclear Tracks in Solids: Principles and Applications需要免费注册. University of California Press. 1975. ISBN 9780520026650. 
  11. ^ Hintenberger, H. Xenon in irdischer und in extraterrestrischer Materie (Xenologie). Naturwissenschaften. Jul 1972, 59 (7): 285–91. Bibcode:1972NW.....59..285H. S2CID 33097923. doi:10.1007/BF00593352. 
  12. ^ Kuroda, P. Xenology: The enigma of xenon in carbonaceous chondrite. Geochemical Journal. Jan 1976, 10 (3): 121–36. Bibcode:1976GeocJ..10..121K. doi:10.2343/geochemj.10.121可免费查阅. 
  13. ^ Staudacher, T. Allègre C. Terrestrial xenology. Earth and Planetary Science Letters. Oct 1982, 60 (3): 389–406. Bibcode:1982E&PSL..60..389S. doi:10.1016/0012-821X(82)90075-9. 
  14. ^ Tolstikhin, I.; Marty, B.; Porcelli, D.; Hofmann, A. Evolution of volatile species in the earth's mantle: A view from xenology. Geochimica et Cosmochimica Acta. Jul 2014, 136: 229–46. Bibcode:2014GeCoA.136..229T. doi:10.1016/j.gca.2013.08.034. 
  15. ^ Diehl, R.; Hartmann, D.; Prantzos, N. 2.2.4 Extinct Radioactivity and Immediate Pre-Solar Nucleosynthesis. Astrophysics with Radioactive Isotopes 2nd. Springer. 2018. ISBN 978-3319919294. 
  16. ^ Lewis, R.; Ming, T.; Wacker, J.; Anders, E.; Steel, E. Interstellar diamonds in meteorites. Nature. Mar 1987, 326 (6109): 160–62. Bibcode:1987Natur.326..160L. S2CID 4324489. doi:10.1038/326160a0. 
  17. ^ Zinner, E.; Ming, T.; Anders, E. Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite. Nature. 24 Dec 1987, 330 (6150): 730–32. Bibcode:1987Natur.330..730Z. S2CID 4306270. doi:10.1038/330730a0. 
  18. ^ Ott, U. Interstellar grains in meteorites. Nature. Jul 1993, 364 (6432): 25–33. Bibcode:1993Natur.364...25O. S2CID 4271084. doi:10.1038/364025a0. 
  19. ^ 引证错误:没有为名为andersMESS的参考文献提供内容
  • Handbook of Elemental Abundances in Meteorites, Mason, B. ed. 1970 Gordon and Breach New York ISBN 9780677149509 Chapter 2: The Noble Gases, Heymann, D., p. 29
  • Mazor, E. Heymann, D. Anders, E. Noble gases in carbonaceous chondrites. 1970 Geochimica et Cosmochimica Acta vol. 34 p. 781-824
  • Goswami, J. Lal, D. Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system 1983 Space Science Reviews vol. 37 p. 111-59
  • The Sun in Time, Sonett, C. Giampapa, M. Mathews, M. eds. 1991 University of Arizona Press Tucson ISBN 978-0-8165-1297-3
  • Ozima, M. Podosek, F. Noble Gases in Geochemistry, 2nd ed. 2002 Cambridge University Press Cambridge ISBN 9780521803663
  • Noble Gases in Geochemistry and Cosmochemistry, Porcelli, D. Ballentine, C. Wieler, R. eds. 2002 Mineralogical Society of America Washington, DC
  • Treatise on Geochemistry vol.1 2003 1.14 Noble Gases, Podosek, F. p. 381-403
  • Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press Tucson ISBN 9780816525621
  • Geochemical Perspectives Jul 2013 vol. 2 issue 2 Special issue, Noble Gas Constraints on the Origin and Evolution of Earth’s Volatiles ISSN 2223-7755