这张在法国大西洋 岸雷岛 (RHE)鲸鱼灯塔拍摄的照片,显示浅海上田字形的椭圆余弦波列。这种浅水中的孤波 可以由卡东穆夫-彼得韦亚斯维利方程模拟。
卡东穆塞夫-彼得韦亚斯维利方程 (Kadomtsev-Petviashvili equation),简称KP方程,是1970年苏联物理学家波里斯·卡东穆塞夫 和弗拉基米尔-彼得韦亚斯维利创立以模拟非线性波动的非线性偏微分方程[ 1] :
∂
x
(
∂
t
u
+
u
∂
x
u
+
ϵ
2
∂
x
x
x
u
)
+
λ
∂
y
y
u
=
0
{\displaystyle \displaystyle \partial _{x}(\partial _{t}u+u\partial _{x}u+\epsilon ^{2}\partial _{xxx}u)+\lambda \partial _{yy}u=0}
其中
λ
=
±
1
{\displaystyle \lambda =\pm 1}
.
解析解
卡东穆塞夫-彼得韦亚斯维利方程有解析解[ 2]
行波解
u
(
x
,
y
,
t
)
=
C
5
+
12.
∗
C
2
∗
tanh
(
C
1
+
C
2
∗
x
+
C
3
∗
y
−
(
.50000000000000000000
∗
(
8.
∗
C
2
4
+
C
3
2
)
)
∗
t
/
C
2
)
{\displaystyle u(x,y,t)=C5+12.*_{C}2*\tanh(_{C}1+_{C}2*x+_{C}3*y-(.50000000000000000000*(8.*_{C}2^{4}+_{C}3^{2}))*t/_{C}2)}
代人参数: C5 = 1, _C1 = 0, _C2 = 1, _C3 = 3
得:
u
=
1
+
12.
∗
t
a
n
h
(
x
+
3
∗
y
−
8.5000000000000000000
∗
t
)
{\displaystyle u=1+12.*tanh(x+3*y-8.5000000000000000000*t)}
Sech 函数亮孤立子解
利用sech函数展开法可得卡东穆塞夫-彼得韦亚斯维利方程的sech函数解和tanh函数解[ 3] 。
u
:=
a
∗
s
e
c
h
(
a
∗
x
+
b
∗
y
+
c
∗
z
−
(
a
4
+
3
∗
b
2
+
3
∗
c
2
)
/
a
)
∗
t
{\displaystyle u:=a*sech(a*x+b*y+c*z-(a^{4}+3*b^{2}+3*c^{2})/a)*t}
参数:a = -2 .. 2, b = -2 .. 2, c = 0
tanh 函数解
u
:=
2
∗
a
2
∗
t
a
n
h
(
a
∗
x
+
b
∗
y
+
(
8
∗
a
4
−
3
∗
b
2
)
/
a
)
2
∗
t
{\displaystyle u:=2*a^{2}*tanh(a*x+b*y+(8*a^{4}-3*b^{2})/a)^{2}*t}
[ 4] 。
参数:a = 2, b = -2;
雅可比橢圓函數解
通过朗斯基行列式 展开法可得卡东塞穆夫-彼得韦亚斯维利方程多个雅可比橢圓函數解[ 5] 。
u
4
:=
(
−
4
∗
m
2
∗
k
[
1
]
2
∗
g
)
(
1
−
m
2
∗
s
n
(
ξ
[
1
]
,
k
)
∗
s
i
n
(
ξ
[
2
]
)
+
d
n
(
ξ
[
1
]
,
k
)
∗
c
o
s
(
ξ
[
2
]
)
∗
c
n
(
ξ
[
1
]
,
k
)
)
2
)
{\displaystyle u4:={\frac {(-4*m^{2}*k[1]^{2}*g)}{({\sqrt {1-m^{2}}}*sn(\xi [1],k)*sin(\xi [2])+dn(\xi [1],k)*cos(\xi [2])*cn(\xi [1],k))^{2})}}}
其中:
g
=
(
m
2
−
1
)
∗
s
n
(
ξ
[
1
]
,
k
)
2
+
(
2
−
2
∗
m
2
)
∗
s
n
(
ξ
[
1
]
,
k
)
4
+
c
o
s
(
ξ
[
2
]
)
2
;
−
2
∗
s
n
(
ξ
[
1
]
,
k
)
2
∗
c
o
s
(
ξ
[
2
]
)
2
+
m
2
∗
s
n
(
ξ
[
1
]
,
k
)
4
∗
c
o
s
(
ξ
[
2
]
)
2
{\displaystyle g=(m^{2}-1)*sn(\xi [1],k)^{2}+(2-2*m^{2})*sn(\xi [1],k)^{4}+cos(\xi [2])^{2};-2*sn(\xi [1],k)^{2}*cos(\xi [2])^{2}+m^{2}*sn(\xi [1],k)^{4}*cos(\xi [2])^{2}}
ξ
[
1
]
=
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
{\displaystyle \xi [1]=k[1]*x+\lambda [1]*y+(4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1]}
ξ
[
2
]
=
1
−
m
2
∗
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
(
−
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
)
−
γ
[
2
]
{\displaystyle \xi [2]={\sqrt {1-m^{2}}}*(k[1]*x+\lambda [1]*y+(-4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t)-\gamma [2]}
代入后得:
f
4
:=
−
4
∗
m
2
∗
k
[
1
]
2
∗
(
(
m
2
−
1
)
∗
J
a
c
o
b
i
S
N
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
{\displaystyle f4:=-4*m^{2}*k[1]^{2}*((m^{2}-1)*JacobiSN(k[1]*x+\lambda [1]*y+(4*m^{2}*k[1]^{3}+16*k[1]^{3}}
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
,
k
)
2
+
(
2
−
2
∗
m
2
)
∗
J
a
c
o
b
i
S
N
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
{\displaystyle -3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1],k)^{2}+(2-2*m^{2})*JacobiSN(k[1]*x+\lambda [1]*y}
+
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
,
k
)
4
+
{\displaystyle +(4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1],k)^{4}+}
c
o
s
(
(
1
−
m
2
)
∗
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
(
−
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
)
{\displaystyle cos({\sqrt {(1-m^{2})}}*(k[1]*x+\lambda [1]*y+(-4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t)}
−
γ
[
2
]
)
2
)
/
(
s
q
r
t
(
1
−
m
2
)
∗
J
a
c
o
b
i
S
N
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
{\displaystyle -\gamma [2])^{2})/(sqrt(1-m^{2})*JacobiSN(k[1]*x+\lambda [1]*y+(4*m^{2}*k[1]^{3}+16*k[1]^{3}-}
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
,
k
)
∗
s
i
n
(
(
1
−
m
2
)
∗
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
{\displaystyle 3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1],k)*sin({\sqrt {(}}1-m^{2})*(k[1]*x+\lambda [1]*y+}
(
−
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
)
−
γ
[
2
]
)
+
J
a
c
o
b
i
D
N
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
{\displaystyle (-4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t)-\gamma [2])+JacobiDN(k[1]*x+\lambda [1]*y+}
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
,
k
)
∗
c
o
s
(
1
−
m
2
∗
(
k
[
1
]
∗
x
+
λ
[
1
]
∗
y
+
{\displaystyle (4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1],k)*cos({\sqrt {1-m^{2}}}*(k[1]*x+\lambda [1]*y+}
(
−
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
)
−
γ
[
2
]
)
∗
J
a
c
o
b
i
C
N
(
k
[
1
]
∗
x
+
{\displaystyle (-4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t)-\gamma [2])*JacobiCN(k[1]*x+}
λ
[
1
]
∗
y
+
(
4
∗
m
2
∗
k
[
1
]
3
+
16
∗
k
[
1
]
3
−
3
∗
σ
2
∗
λ
[
1
]
2
/
k
[
1
]
)
∗
t
+
γ
[
1
]
,
k
)
)
2
{\displaystyle \lambda [1]*y+(4*m^{2}*k[1]^{3}+16*k[1]^{3}-3*\sigma ^{2}*\lambda [1]^{2}/k[1])*t+\gamma [1],k))^{2}}
参考文献
^ Kodomtsev,B.B and Petviashivili V.I. On the stability of solitary waves in weakly dispersive media Dokl. Akad Nauk SSSR 192 753-6(1970) Soviet Phys. Dok 15,539-41(1970)
^ Erk Infeld & George Rowlands, Nonlinear Waves,Solitons and Chaos p224-233 Cambridge University Press,2000
^ AHMET BEKIR and ÖZKAN GÜNER Bright and dark soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation and generalized Benjamin equation,journal of Physics, August 2013 Vol. 81, No. 2, pp. 203–214
^ AHMET BEKIR and ÖZKAN GÜNER
^ 吕大昭等 Novel Interaction Solutions to Kadomtsev–Petviashvili Equation,Commun. Theor. Phys. (Beijing, China) 54 (2010) pp. 484–488
*谷超豪 《孤立子 理论中的达布变换 及其几何应用》 上海科学技术出版社
*阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
李志斌编著 《非线性数学物理方程的行波解》 科学出版社
王东明著 《消去法及其应用》 科学出版社 2002
*何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
Dongming Wang, Elimination Practice,Imperial College Press 2004
David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759