态函数
(重定向自状态函数)
热力学 |
---|
在平衡熱力學中, 态函数[1][2](英語:state function)又称狀態函數、热力学函数[3][4](thermodynamic function),是描述系统热力学状态的宏观物理性质的函数。处于平衡状态的热力学系统,各宏观物理量具有确定的值,并且这些物理量仅由系统所处的状态所决定,与达到平衡态的过程无关。决定物质状态的物理量被称为状态函数。其中包含了“热力学势”,热力学势特指下面提到的四个具有能量量纲的热力学函数。
熱力學系统的狀態函数一般存在一定的相互依存关系。如理想氣體的狀態方程式中,可以任意选取其中的兩個狀態函數為独立变量,而把其他的統計量看作它们的函数。热力学函数之间的依存关系具有普适性。
简单系统的的热力学函数
简单热力学系统(如量子、古典氣體系統)一般具有以下热力学函数,可以任意选取其中两个作为独立变量: 量綱(單位)不是能量的热力学函数
物理量 | 符号 | 单位 |
---|---|---|
体积 | V | m3 |
压强 | P | Pa和atm |
温度 | T | K和℃ |
熵 | S | J/(mol·K) |
物理量 | 符号 | 单位 |
---|---|---|
内能 | U | J |
焓 | H | J |
吉布斯能 | G | J |
亥姆霍兹自由能 | F | J |
热力学势
上面给出的热力学函数中,后四个具有能量的量纲,单位都为焦耳,这四个量通常称为「热力学势」。
内能 | 有时也用E表示 | |
亥姆霍兹自由能 | 也常用F表示 | |
焓 | ||
吉布斯能 |
其中,
具有 廣義力 和 廣義位移 熱力學系統, 內能的微分式可從熱力學第一定律得知:
公式內的U、S和V是熱力學的狀態函數,也可用於非平衡、不可逆的過程。
其餘三個熱力學勢可經由 勒壤得轉換 (Legendre transform)轉換自變數而得到。
通过对以上微分表达式求偏导,可以得到T,S,P,V四个变量的偏导数间的“麦氏关系”
相關條目
参考
延伸阅读
- Alberty, R. A. Use of Legendre transforms in chemical thermodynamics (PDF). Pure Appl. Chem. 2001, 73 (8): 1349–1380 [2010-12-23]. doi:10.1351/pac200173081349. (原始内容存档 (PDF)于2017-08-14).
- Reichl, Linda E. A modern course in statistical physics 2 ed. London: Wiley. 1998. ISBN 0-471-59520-9.
- 华彤文等 《普通化学原理》第三版 2005 ISBN 7-301-09213-X/O 0654